Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potential Impact Odorants of Madeira Wines
2.1.1. Young Madeira Wines
2.1.2. Old Madeira Wines
3. Materials and Methods
3.1. Sampling
3.2. Reagents and Standards
3.3. Sensory Analysis
3.4. Headspace Solid-Phase Microextraction Tandem with Gas Chromatography-Mass Spectrometry (HS-SPME) methodology
3.5. GC–qMS Analysis for Madeira Wines Profiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perestrelo, R.; Albuquerque, F.; Rocha, S.M.S.M.; Câmara, J.S.J.S. Distinctive characteristics of madeira wine regarding its traditional winemaking and modern analytical methodologies. Adv. Food Nutr. Res. 2011, 63, 207–249. [Google Scholar] [PubMed]
- Perestrelo, R.; Petronilho, S.; Câmara, J.S.; Rocha, S.M. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine. J. Chromatogr. A 2010, 1217, 3441–3445. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Palomo, E.; Trujillo, M.; Ruiz, A.G.; Viñas, M.A.G. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. Study of Sensory Interactions among Red Wine Fruity Esters in a Model Solution. J. Agric. Food Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis. Anal. Chim. Acta 2010, 660, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Ferreira, V.; Escudero, A.; Marqués, J.C.; Cacho, J. Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta 2006, 563, 180–187. [Google Scholar] [CrossRef]
- Mendes, B.; Gonçalves, J.; Câmara, J.S. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines—A comparative study. Talanta 2012, 88, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemom. Intell. Lab. Syst. 2011, 105, 43–55. [Google Scholar] [CrossRef]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem. 2014, 162, 122–134. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Câmara, J.S.; Marques, J.C.; Alves, M.A.; Silva Ferreira, A.C. 3-Hydroxy-4,5-dimethyl-2(5H)-furanone levels in fortified Madeira wines: Relationship to sugar content. J. Agric. Food Chem. 2004, 52, 6765–6769. [Google Scholar] [CrossRef]
- Câmara, J.S.; Marques, J.C.; Alves, A.; Ferreira, A.C.S. Heterocyclic acetals in Madeira wines. Anal. Bioanal. Chem. 2003, 375, 1221–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, R.F.; Nascimento, A.M.D.; Nogueira, J.M.F. Characterization of the aroma profile of Madeira wine by sorptive extraction techniques. Anal. Chim. Acta 2005, 546, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Barros, A.S.; Câmara, J.S.; Rocha, S.M. In-depth dearch focused on furans, lactones, volatile phenols, and acetals as potentialage markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef]
- Mellon, F.A. CHROMATOGRAPHY|Combined Chromotography and Mass Spectrometry. Encycl. Food Sci. Nutr. 2003, 1294–1301. [Google Scholar]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Development of headspace solid-phase microextraction-gas chromatography–mass spectrometry methodology for analysis of terpenoids in Madeira wines. Anal. Chim. Acta 2006, 555, 191–200. [Google Scholar] [CrossRef]
- Câmara, J.S.; Herbert, P.; Marques, J.C.; Alves, M.A. Varietal flavour compounds of four grape varieties producing Madeira wines. Anal. Chim. Acta 2004, 513, 203–207. [Google Scholar] [CrossRef]
- Pereira, V.; Albuquerque, F.M.; Ferreira, A.C.; Cacho, J.; Marques, J.C. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef]
- Pereira, V.; Leça, J.M.; Gaspar, J.M.; Pereira, A.C.; Marques, J.C. Rapid determination of sotolon in fortified wines using a miniaturized liquid-liquid extraction followed by LC-MS/MS analysis. J. Anal. Methods Chem. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Durán, E.; Castro, R.; Rodríguez-Dodero, M.C.; Natera, R.; García-Barroso, C. Study of the volatile composition and sensory characteristics of new Sherry vinegar-derived products by maceration with fruits. LWT—Food Sci. Technol. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- Lee, S.-J.; Noble, A.C. Characterization of odor-active compounds in Californian chardonnay wines using GC-olfactometry and GC-mass spectrometry. J. Agric. Food Chem. 2003, 51, 8036–8044. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Perestrelo, R.; Câmara, J.S.; Castilho, P.C. Establishment of Monstera deliciosa fruit volatile metabolomic profile at different ripening stages using solid-phase microextraction combined with gas chromatography–mass spectrometry. Food Res. Int. 2015, 67, 409–417. [Google Scholar] [CrossRef]
- Agnihotri, V.K.; Agarwal, S.G.; Dhar, P.L.; Thappa, R.K.; Kapahi, B.K.; Saxena, R.K.; Qazi, G.N. Essential oil composition of Mentha pulegium L. growing wild in the north-western Himalayas India. Flavour Fragr. J. 2005, 20, 607–610. [Google Scholar] [CrossRef]
- Choi, H.-S. Lipolytic effects of citrus peel oils and their components. J. Agric. Food Chem. 2006, 54, 3254–3258. [Google Scholar] [CrossRef]
- Mallia, S.; Fernández-García, E.; Olivier Bosset, J. Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses. Int. Dairy J. 2005, 15, 741–758. [Google Scholar] [CrossRef]
- Gürbüz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography−olfactometry and gas chromatography−mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef]
- Kim, T.H.; Shin, J.H.; Baek, H.H.; Lee, H.J. Volatile flavour compounds in suspension culture ofAgastache rugosa Kuntze (Korean mint). J. Sci. Food Agric. 2001, 81, 569–575. [Google Scholar] [CrossRef]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Li, J.; Fan, W.; Jiang, W. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. J. Food Sci. 2009, 74, C90–C99. [Google Scholar] [CrossRef]
- Bertagnolli, S.M.M.; Bernardi, G.; Donadel, J.Z.; Fogaça, A.D.O.; Wagner, R.; Penna, N.G. Natural sparkling guava wine: Volatile and physicochemical characterization. Ciência Rural 2017, 47. [Google Scholar] [CrossRef]
- Fazzalari, F.A. Compilation of odor and taste threshold values data; American Society for Testing and Materials: West Conshohocken, PA, USA, 1978. [Google Scholar]
- Ferreira, V.; Aznar, M.; López, R.; Cacho, J. Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines. J. Agric. Food Chem. 2001, 49, 4818–4824. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.A.; Muñoz, D.; Medina, M.; Moreno, J. Gas chromatographic quantification of major volatile compounds and polyols in wine by direct injection. J. Agric. Food Chem. 2004, 52, 6389–6393. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments: Second Edition; John Wiley & Sons, Ltd.: Chichester, UK, 2006; Volume 2, ISBN 9780470010396. [Google Scholar]
- Acree, T.; Arn, H. Flavornet Home Page. Available online: http://www.flavornet.org/ (accessed on 14 February 2019).
- Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC–MS and GC–O. Flavour Fragr. J. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Ducruet, V.; Fournier, N.; Saillard, P.; Feigenbaum, A.; Guichard, E. Influence of packaging on the aroma stability of strawberry syrup during shelf life. J. Agric. Food Chem. 2001, 49, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M. The Pherobase: Database of insect pheromones and semiochemicals. Available online: http://www.pherobase.com (accessed on 7 July 2018).
- Fan, W.; Qian, M.C. Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory properties and aroma compounds of sweet Fiano wine. Food Chem. 2007, 103, 1228–1236. [Google Scholar] [CrossRef]
- Giri, A.; Osako, K.; Okamoto, A.; Ohshima, T. Olfactometric characterization of aroma active compounds in fermented fish paste in comparison with fish sauce, fermented soy paste and sauce products. Food Res. Int. 2010, 43, 1027–1040. [Google Scholar] [CrossRef]
- Leffingwell, D.; Leffingwell, J.C. Odor detection thresholds of GRAS flavor chemicals. Available online: http://www.leffingwell.com (accessed on 1 July 2018).
- Silva, H.O.; Guedes De Pinho, P.; Machado, B.P.; Hogg, T.; Marques, J.C.; Câmara, J.S.; Albuquerque, F.; Silva Ferreira, A.C. Impact of forced-aging process on Madeira wine flavor. J. Agric. Food Chem. 2008, 56, 11989–11996. [Google Scholar] [CrossRef] [PubMed]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory threshold of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and concentrations in young Riesling and Non-Riesling wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control. 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Pereira, V.; Santos, M.; Cacho, J.; Marques, J.C. Assessment of the development of browning, antioxidant activity and volatile organic compounds in thermally processed sugar model wines. LWT 2017, 75, 719–726. [Google Scholar] [CrossRef]
- Perestrelo, R.; Rodriguez, E.; Câmara, J.S.J.S. Impact of storage time and temperature on furanic derivatives formation in wines using microextraction by packed sorbent tandem with ultrahigh pressure liquid chromatography. LWT—Food Sci. Technol. 2017, 76, 40–47. [Google Scholar] [CrossRef]
- van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Silva, P.; Câmara, J.S. Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods. Microchem. J. 2018, 142, 367–376. [Google Scholar] [CrossRef]
- Kang, W.; Xu, Y.; Qin, L.; Wang, Y. Effects of different β-D-glycosidases on bound aroma compounds in Muscat grape determined by HS-SPME and GC-MS. J. Inst. Brew. 2010, 116, 70–77. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
RT (min) 1 | KIcalc 2 | KIlit 3 | ID 4 | Chemical Families | OTs (µg/L) 5 | Odor descriptors 6 |
---|---|---|---|---|---|---|
Terpenic compounds | ||||||
7.34 | 1150 | 1158 | MS, RI, Std | β-Pinene | 6 | 7 Citrus, floral, fruit, green, pine, sweet, terpenic, wood |
8.38 | 1178 | 1182 | MS, RI, Std | Limonene 8 | 10 | Citrus, fruit, wood |
18.96 | 1430 | 1433 | MS, RI | (E)-Linalool oxide | 500 | Floral, green, rose, sweet |
19.16 | 1445 | 1451 | MS, RI | (Z)-Linalool oxide | 500 | Floral, green, rose, sweet |
22.88 | 1537 | 1537 | MS, RI, Std | Linalool | 15 | Citrus, lavender, floral, fruit, green, muscat, sweet |
24.01 | 1561 | 1566 | MS, RI, Std | β-Caryophyllene | - 9 | Fruit, green, spice, wood |
28.58 | 1673 | 1669 | MS, RI, Std | α-Terpineol | 250 | Anise, floral, fruit, mint, oil, toothpaste |
31.38 | 1764 | 1762 | MS, RI, Std | Citronellol | 30 | Citrus, clove, floral, fresh, green, rose, sour, sweet |
39.86 | 1981 | 2009 | MS, RI, Std | Geraniol | 20 | Citrus, floral, fruit, waxy |
41.99 | 2125 | 2134 | MS, RI | δ-Cadinol | - | Almond, green, waxy, wood |
Norisoprenoids | ||||||
21.47 | 1498 | 1507 | MS, RI, Std | Vitispirane I | 800 | Camphor, eucalyptus, spice, wood |
21.57 | 1501 | 1510 | MS, RI, Std | Vitispirane II | - | Camphor, eucalyptus, spice, wood |
26.22 | 1614 | 1623 | MS, RI, Std | β-Cyclocitral | 5 | Floral, sweet |
30.86 | 1742 | 1755 | MS, RI, Std | TDN 10 | 2 | Floral, fruit, pleasant, wine |
32.33 | 1785 | 1790 | MS, RI, Std | β-Damascenone 6 | 0.05 | Floral, fruit, honey, sweet, tobacco |
34.79 | 1844 | 1840 | MS, RI, Std | Geranyl acetone | 60 | Floral, fruit, green, waxy, wood |
36.34 | 1910 | 1912 | MS, RI, Std | β-Ionone | 0.10 | Floral, violet |
Higher Alcohols | ||||||
4.78 | 1074 | 1057 | MS, RI, Std | Butan-2-ol | - | Alcohol, oil, wine |
6.12 | 1113 | 1112 | MS, RI, Std | 2-Methylpropan-1-ol | 40,000 | Alcohol, bitter, glue, leek, licorice |
7.87 | 1165 | 1176 | MS, RI, Std | Hexan-2-ol | - | Fatty, fruit, wine |
9.51 | 1206 | 1206 | MS, RI, Std | 3-Methylbutan-1-ol | 30,000 | Alcohol, balsamic, burnt, cheesy, fruit, pungent, ripe onion |
15.15 | 1350 | 1354 | MS, RI, Std | Hexan-1-ol | 8000 | Floral, fruit, green, herbal, mild, toasty, sweet, wood |
15.23 | 1352 | 1362 | MS, RI, Std | (E)-3-Hexen-1-ol | 400 | Fresh, green, grass, leaf |
16.11 | 1371 | 1379 | MS, RI, Std | (Z)-3-Hexen-1-ol | 400 | Fresh, green, grass, leaf |
22.25 | 1514 | 1510 | MS, RI, Std | 2-Ethylhexan-1-ol | 270 | Citrus, fresh, floral, oil, sweet |
22.43 | 1521 | 1524 | MS, RI | (R,S)-Butan 2,3-diol | 120,000 | Fruit |
23.93 | 1556 | 1556 | MS, RI | (R,R)-Butan-2,3-diol | 120,000 | Fruit |
32.29 | 1784 | 1783 | MS, RI, Std | Decan-1-ol | 400 | Fatty |
35.31 | 1861 | 1869 | MS, RI, Std | Benzyl alcohol | 200,000 | Blackberry, floral, fruit |
36.42 | 1915 | 1910 | MS, RI, Std | 2-Phenyethyl alcohol | 14,000 | Floral, herbal, honey, pollen, rose, spice, sweet |
Sulphur compound | ||||||
29.65 | 1701 | 1723 | MS, RI, Std | Ethyl 3-(methylthio)propionate | 7 | Fruit, pineapple |
Esters | ||||||
4.68 | 1055 | 1047 | MS, RI, Std | Ethyl butanoate | 20 | Acetone, bubblegum, caramel, fruit |
4.71 | 1061 | 1053 | MS, RI, Std | Ethyl 3-methylbutanoate | 3 | Anise, apple, blackcurrant, citrus, fruit, sweet |
6.51 | 1125 | 1120 | MS, RI, Std | Isoamyl acetate | 30 | Banana, fresh, fruit, sweet |
10.04 | 1222 | 1220 | MS, RI, Std | Ethyl hexanoate | 5 | Anise, caramel, fruit, wine |
10.31 | 1254 | 1262 | MS, RI, Std | Hexyl acetate | 10 | Acid, citrus, fruit, green, herbal, rubber, spice, tobacco |
10.52 | 1279 | 1276 | MS, RI, Std | Ethyl pyruvate | - | Caramel, ethereal, fruit, vegetable, sweet |
14.67 | 1339 | 1340 | MS, RI | Ethyl lactate | 154,636 | Acidic, ethereal, fruit, sweet |
18.16 | 1416 | 1414 | MS, RI, Std | Ethyl octanoate | 2 | Fruit, must, soap, sweet, waxy |
20.98 | 1478 | 1483 | MS, RI, Std | Ethyl 3-hydroxybutanoate | 20,000 | Coconut, grape, nutty |
26.58 | 1617 | 1624 | MS, RI, Std | Ethyl decanoate | 200 | Fruit, pleasant, soap, sweet, waxy |
28.07 | 1659 | 1661 | MS, RI, Std | Diethyl succinate | 500,000 | Fabric, floral, fruit, lavender, potato, sweat |
29.34 | 1693 | 1696 | MS, RI | Ethyl 3-hydroxyhexanoate | 265 | Citrus, fruit, green, sweet |
29.72 | 1715 | 1708 | MS, RI | Ethyl 9-decenoate | 100 | Fruit, fatty |
32.07 | 1773 | 1775 | MS, RI, Std | Ethyl benzeneacetate | - | Fruit |
34.52 | 1838 | 1837 | MS, RI, Std | Ethyl dodecanoate | 500 | Fruit, soap, sweet |
34.99 | 1857 | 1839 | MS, RI, Std | Ethyl salicylate | - | Balsamic, cooling, floral, fruit, spice, sweet |
35.58 | 1873 | 1870 | MS, RI | Benzyl butanoate | - | Floral, fruit, jasmin, sweet, |
35.87 | 1880 | 1883 | MS, RI, Std | Ethyl 2-phenylacetate | 250 | Floral |
66.75 | 2354 | 2358 | MS, RI, Std | Diethyl tartrate | - | - |
68.62 | 2420 | 2440 | MS, RI, Std | Ethyl succinate | - | Fruit |
70.49 | 2486 | 2499 | MS, RI | Ethyl citrate | - | Floral |
Acids | ||||||
18.51 | 1425 | 1426 | MS, RI, Std | Acetic acid | 200,000 | Pungent, vinegar, sour |
23.52 | 1547 | 1557 | MS, RI, Std | 2-Methylpropanoic acid | 200,000 | Cheesy, fatty, phenolic, sweaty |
25.97 | 1600 | 1607 | MS, RI, Std | Butanoic acid | 10,000 | Buttery, cheesy, rancid, sweaty |
27.56 | 1645 | 1647 | MS, RI, Std | 3-Methylbutanoic acid | 3000 | Cheesy, rancid, sweaty |
34.49 | 1837 | 1840 | MS, RI, Std | Hexanoic acid | 3000 | Cheesy, pungent, rancid, sweaty |
36.92 | 1978 | 1981 | MS, RI, Std | 2-Ethylhexanoic acid | - | Cheesy |
41.82 | 2098 | 2089 | MS, RI, Std | Octanoic acid | 10,000 | Cheesy, fatty, fresh, moss |
48.56 | 2321 | 2317 | MS, RI, Std | Decanoic acid | 15,000 | Cheesy, fatty, soap |
67.81 | 2392 | 2407 | MS, RI | Undecylic acid | 40 | Oil |
Acetals | ||||||
4.99 | 1094 | 1096 | MS, RI, Std | 1,1-Diethoxyethane | 1000 | Liquorices, nutty, pungent, wood |
21.86 | 1512 | 1525 | MS, RI, Std | Cis-dioxane | - | Wood |
26.84 | 1642 | 1639 | MS, RI, Std | Cis-dioxolane | - | Wood |
31.01 | 1755 | 1740 | MS, RI, Std | Trans-dioxane | - | Wood |
Furanic compounds | ||||||
18.03 | 1412 | 1434 | MS, RI, Std | 2-Acetylfuran | - | Balsamic-cinnamic, cereal, sweet, toast, tobacco |
20.86 | 1465 | 1458 | MS, RI, Std | 2-Furfural | 14,100 | Almond, caramel, sweet, wood |
22.45 | 1526 | 1524 | MS, RI, Std | 1-(2-Furyl)-1-propanone | - | Radish, spice |
23.67 | 1550 | 1560 | MS, RI, Std | 5-Methyl-2-furfural | 20,000 | Acid, almond, caramel, coffee, spice, toast |
26.01 | 1606 | 1606 | MS, RI, Std | Ethyl 2-furoate | 16,000 | Balsamic, scorched tone, vanilla |
68.15 | 2412 | - | MS, RI, Std | 5-Ethoxymethyl-2-furfural | 6 | Curry, spice |
75.02 | 2501 | 2509 | MS, RI, Std | 5-Hydroxymethyl-2-furfural | 10,000 | Almond, cardboard, nutty |
Lactones | ||||||
25.71 | 1594 | 1595 | MS, RI, Std | Butyrolactone | 35,000 | Caramel, coconut, cream, peach |
29.01 | 1690 | 1694 | MS, RI, Std | γ-Hexalactone | 1600 | Apricot, peach |
36.65 | 1936 | 1933 | MS, RI, Std | γ-Octalactone | 400 | Caramel, coconut, cream, fatty, herbaceous, nutty |
42.75 | 2197 | 2185 | MS, RI, Std | γ-Decalactone | 88 | Fruit, sweet |
43.92 | 2218 | 2219 | MS, RI | (Z)-Whiskylactone | 67 | Caramel, coconut, nutty, toast, wood |
45.44 | 2267 | 2241 | MS, RI, Std | γ-Dodecalactone | 1000 | Coconut, fruit, musk, sweet |
Volatile phenols | ||||||
41.63 | 2076 | 2080 | MS, RI, Std | 2-Phenoxyethanol | - | Alcoholic, floral, rose |
45.13 | 2257 | 2250 | MS, RI, Std | Eugenol | 5 | Balsamic, clove, herbaceous, honey, spice |
77.06 | 2563 | 2561 | MS, RI, Std | Vanillin | 4 | Sweet, vanilla |
78.77 | 2620 | 2613 | MS, RI, Std | Methyl vanillate | 990 | Vanilla |
Madeira Wine Sensory Analysis | ||
---|---|---|
Variety | Younger wines (3 to 5 Years Old) | Older wines (10 to 20 Years Old) |
Malvasia | Almond, banana, citrus, cocoa, floral, tobacco, wood | Almond, caramel, dried fruits, spice, tobacco, toast, vanilla, wood |
Bual | Almond, banana, cocoa, floral, tea | Almond, caramel, dried fruits, spice, tea, toast, wood |
Sercial | Citrus, honey, mushroom, waxy | Dried fruits, honey, spice, toast, vanilla, wood |
Verdelho | Banana, floral, honey, mushroom, spice | Dried fruits, ethereal, honey, spice, toast, wood |
Tinta Negra | Citrus, ripe fruit, tea, wood | Caramel, dried fruits, spice, tea, toast, wood |
Odor Descriptor | Madeira Wines | Potential Odorant |
---|---|---|
Citrus | Malvasia, Sercial, TN | α-pinene, limonene, linalool, citronellol, geraniol, hexyl acetate, ethyl 3-methylbutanoate, ethyl 3-hydroxyhexanoate, 2-ethylhexan-1-ol |
Floral | Malvasia, Bual, Verdelho | α-pinene, linalool, citronellol, geraniol, β-cyclocitral, TDN 1, β-damascenone, geranyl acetone, β-ionone, 1-hexanol, 2-phenylethyl alcohol |
Waxy | Sercial | geraniol, geranyl acetone, ethyl octanoate, ethyl decanoate |
Almond | Malvasia, Bual, Tinta Negra | δ-cadinol |
Caramel | Malvasia, Bual | ethyl butanoate, ethyl hexanoate, ethyl pyruvate, (Z)-whiskylactone |
Ethereal | Verdelho | ethyl lactate, ethyl pyruvate |
Spice | Malvasia, Bual, Verdelho, Sercial, TN | hexyl acetate, 2-phenyethyl alcohol, 5-(ethoxymethyl)furfural, eugenol |
Toast | Malvasia, Bual, Verdelho, Sercial, TN | (Z)-whiskylactone |
Wood | Malvasia, Bual, Verdelho, Sercial, TN | δ-cadinol |
Vanilla | Malvasia, Sercial | ethyl 2-furoate, vanillin, methyl vanillate |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. https://doi.org/10.3390/molecules24173028
Perestrelo R, Silva C, Câmara JS. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules. 2019; 24(17):3028. https://doi.org/10.3390/molecules24173028
Chicago/Turabian StylePerestrelo, Rosa, Catarina Silva, and José S. Câmara. 2019. "Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors" Molecules 24, no. 17: 3028. https://doi.org/10.3390/molecules24173028
APA StylePerestrelo, R., Silva, C., & Câmara, J. S. (2019). Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules, 24(17), 3028. https://doi.org/10.3390/molecules24173028