Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Standard Solutions
3.2. RP-TLC
- -
- the content of methanol was gradually varied by 10% (v/v) from 20–100 (%, v/v),
- -
- the content of acetone was gradually varied by 10% (v/v) from 10–100 (%, v/v).
- -
- the content of methanol was gradually varied by 5% (v/v) from 60–100 (%, v/v),
- -
- the content of acetone was gradually varied by10% (v/v) from 20–100 (%, v/v).
3.3. Densitometric Analysis
3.4. Calculations
3.4.1. Chromatographic Parameters of Lipophilicity RMWS and φ0
3.4.2. Chromatographic Parameter of Lipophilicity RMWO
3.5. Determining the Theoretical and Experimental Partition Coefficients (logP)
3.6. Regression and Cluster Analysis (CA)
4. Conclusions
- 1.
- The RP-TLC method and the Soczewiński-Wachtmeister’s and Ościk’s equations are cost-effective and good tools for the assessment of the lipophilic properties of selected antiparasitic drugs such as metronidazole, ornidazole, secnidazole, and tinidazole, antihypertensive drugs like nilvadipine, felodipine, isradipine, and lacidipine, and non-steroidal anti-inflammatory drugs, i.e., mefenamic acid, nabumetone, phenylbutazone, carprofen, ketoprofen, flurbiprofen, and indomethacin.
- 2.
- The mobile phase, consisting of acetone-water, is not suitable for the determination of the RMWO parameter by using Ościk’s equation for the examined NSAIDs.
- 3.
- The chromatographically determined lipophilicity parameters (RMWS(a)) show the biggest similarity to the theoretical parameter MlogP for antiparasitic drugs, which was calculated via the Moriguchi method.
- 4.
- The two chromatographically obtained lipophilicity parameters (RMWS(m) and RMWS(a)) show a strong connection with the theoretical parameters of lipophilicity, AlogPs and AC logP, in the case of antihypertensive drugs.
- 5.
- The parameter RMWO(m) determined by Ościk’s equation has the biggest similarity to the theoretical parameters milogP and MlogP for non-steroidal anti-inflammatory drugs due to the Euclidean distance.
- 6.
- The chromatographic parameter φ0(a) can be helpful for the prediction of partition coefficients, i.e., AClogP and XlogP3, as well as the logPexp of examined compounds.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Disclosure
References
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Ekspert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Pająk, K.; Jóźwiak, K. Lipophilicity- methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013, 70, 3–18. [Google Scholar] [PubMed]
- Jóźwiak, K.; Szumiło, H.; Soczewiński, E. Lipophilicity, methods of determination and its role in biological effect of chemical substances. Wiad. Chem. 2001, 55, 1047–1074. (In Polish) [Google Scholar]
- Patrick, G. Medical Chemistry. Basic issues, 1st ed.; Scientific and Technical Publisher: Warsaw, Poland, 2003; pp. 271–272. (In Polish) [Google Scholar]
- Cimpan, G. Lipophilicity determination of organic substances by reversed-phase TLC. In Encyclopedia of Chromatography, 2nd ed.; Cazes, J., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; Volume 2005, pp. 999–1001. [Google Scholar]
- Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley&Sons: Chichester, UK, 1997; pp. 57–64. [Google Scholar]
- Kempińska, D.; Chmiel, T.; Kot-Wasik, A.; Mróz, A.; Mazerska, Z.; Namieśnik, J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. Trends Anal. Chem. 2019, 113, 54–73. [Google Scholar] [CrossRef]
- Wicha-Komsta, K.; Komsta, Ł. Unconventional TLC systems in lipophilicity determination: A review. J. Liq. Chromatogr. Rel. Technol. 2017, 40, 219–225. [Google Scholar] [CrossRef]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Parys, W.; Pyka, A. Influence of pH water on the lipophilicity of nicotinic acid and its derivatives investigated by RP-TLC. J. Liq. Chromatogr. Rel. Technol. 2010, 33, 1307–1318. [Google Scholar] [CrossRef]
- Hubicka, U.; Żuromska-Witek, B.; Komsta, Ł.; Krzek, J. Lipophilicity study of fifteen fluoroquinolones by reversed-phase thin-layer chromatography. Anal. Methods 2015, 7, 3841–3848. [Google Scholar] [CrossRef]
- Dołowy, M.; Pyka, A. Evaluation of lipophilic properties of betamethasone and related compounds. Acta Pol. Pharm. Drug. Res. 2015, 72, 671–681. [Google Scholar]
- Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K. Multivariate assessment of lipophilicity scales-computational and reversed phase thin-layer chromatographic indices. J. Pharm. Biomed. Anal. 2016, 127, 81–93. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Pluta, K.; Jeleń, M. Lipophilicity of new anticancer 1,6- and 3,6-diazaphenothiazines by of use RP TLC and different computational methods. J. Chromatogr. Sci. 2018, 56, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Dobričić, V.; Stanišić, A.; Vladimirov, S.; Čudina, O. Development of a reversed-phased thin-layer chromatography method for the lipophilicity prediction of 17β-carboxamide glucocorticoid derivatives. J. Planar Chromatogr. Mod. TLC 2018, 31, 250–256. [Google Scholar] [CrossRef]
- Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Nowakowska, J. The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach. J. Pharm. Biomed. Anal. 2018, 149, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, N.M.; Chavada, V.D.; Sanyal, M.; Shrivastav, P.S. Influence of organic modifier and separation modes for lipophilicity assessment of drugs using thin layer chromatography indices. J. Chromatogr. A 2018, 1571, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Lungu, C.N.; Lung, I. Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 2019, 24, 1505. [Google Scholar] [CrossRef] [PubMed]
- Biagi, G.L. The pharmacology and toxicology of 5- nitroimidazoles. In Nitroimidazoles. Chemistry, Pharmacolgy, and Chemical Application; Breccia, A., Ed.; Springer: New York, NY, USA, 1982; pp. 1–7. [Google Scholar]
- Másson, M.; Thorsteinsson, T.; Sigurdsson, T.H.; Loftsson, T. Lipophilic metronidazole derivatives and their absorption through hairless mouse skin. Pharmazie 2000, 55, 369–371. [Google Scholar] [PubMed]
- Hoffmann, H.G.; Forster, D.; Muirhead, B. Metronidazole concentration of the cerebrospinal fluid from slightly inflamed meninges. Arzneimittelforschung 1984, 34, 830–831. [Google Scholar]
- Jokipii, A.M.; Myllyla, V.V.; Hokkanen, E.; Jokipii, L. Penetration of the blood brain barrier by metronidazole and tinidazole. J. Antimicrob. Chemother. 1977, 3, 239–245. [Google Scholar] [CrossRef]
- Guerra, M.C.; Barbaro, A.M.; Cantelli Forti, G.; Foffani, M.T.; Biagi, G.L. RM and logP values of 5- nitroimidazoles. J. Chromatogr. 1981, 216, 93–102. [Google Scholar] [CrossRef]
- Lin, Y.; Hulbert, P.B.; Bueding, E.; Robinson, C.H. Structure and antischistosomal activity in the nitrofurylvinyl and the niridazole series. Noninterchangeability of the nitroheterocyclic rings. J. Med. Chem. 1974, 17, 835–840. [Google Scholar]
- Guerra, M.C.; Barbaro, A.M.; Cantelli Forti, G.; Biagi, G.L. RM values, retention times and octanol- water partition coefficients of a series of 5- nitroimidazoles. J. Chromatogr. 1983, 259, 329–333. [Google Scholar] [CrossRef]
- Sârbu, C.; Todor, S. Determination of lipophilicity of some non-steroidal anti-inflammatory agents and their relationships by using principal component analysis based on thin-layer chromatographic retention data. J. Chromatogr. A 1998, 822, 263–269. [Google Scholar] [CrossRef]
- Pehourcq, F.; Jarry, C.; Bannwarth, B. Potential of immobilized artificial membrane chromatography for lipophilicity determination of arylpropionic acid non-steroidal anti-inflammatory drugs. J. Pharm. Biomed. Anal. 2003, 33, 137–144. [Google Scholar] [CrossRef]
- Czyrski, A. Determination of the lipophilicity of ibuprofen, naproxen, ketoprofen, and flurbiprofen with thin-layer chromatography. J. Chem. 2019, 2019, 6. [Google Scholar] [CrossRef]
- Janicka, M.; Kwietniewski, L.; Matysiak, J. A new method for estimation log kw values and solute biological activity. J. Planar Chromatogr. Mod. TLC 2000, 13, 285–289. [Google Scholar]
- Janicka, M. Application of Oscik’s equation of description of solute retention in RP HPLC and calculation of retention factor in water. J. Liq. Chromatogr. Rel. Technol. 2009, 32, 2779–2794. [Google Scholar] [CrossRef]
- Bhatia, N.; Katkar, K.; Ashtekar, S. Formulation and evaluation of co-prodrug of flurbiprofen and methocarbamol. Asian J. Pharm. Sci. 2016, 11, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Jaroniec, M.; Oscik, J. Liquid-solid chromatography. Recent progress in theoretical studies concerning the dependence of the capacity ratio upon the mobile phase composition. J. High Resol. Chromatogr. Commun. 1982, 5, 3–12. [Google Scholar]
- Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org/lab/alogps (accessed on 15 January 2019).
- Özyazici, M.; Gökçe, E.; Hizarcioglu, S.Y.; Taner, M.S.; Köseoglu, K.; Ertan, G. Dissolution and vaginal absorption characteristics of metronidazole and ornidazole. Pharmazie 2006, 61, 855–861. [Google Scholar]
- Loke, M.L.; Tjornelund, J.; Halling-Sorensen, B. Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere 2002, 48, 351–361. [Google Scholar] [CrossRef]
- Pyka, A.; Babuśka, M.; Zachariasz, M. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol. Pharm. Drug Res. 2006, 63, 159–167. [Google Scholar]
- Ahfouz, N.; Hassan, M.A. Synthesis, chemical and enzymatic hydrolysis, and bioavailability evaluation in rabbits of metronidazole amino acid ester prodrugs with enhanced water solubility. J. Pharm. Pharmacol. 2001, 53, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.E.; Jeunet, F. Pharmacokinetic and Metabolic Studies with Ornidazole in Man. Comparison with Metronidazole. In Chemotherapy. Parasites, Fungi, and Viruses; Williams, J.D., Geddes, A.M., Eds.; Springer: New York, NY, USA, 1976; Volume 6, pp. 49–59. [Google Scholar]
- Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR: Hydrophobic, Electronic and Steric Constants, 1st ed.; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Human Metabolome Database. Available online: http://www.hmdb.ca (accessed on 15 January 2019).
- Van der Lee, R.; Pfaffendorf, M.; Koopmans, R.P.; van Lieshout, J.J.; van Montfrans, G.A.; van Zwieten, P.A. Comparison of the time courses and potencies of the vasodilator effects of nifedipine and felodipine in the human forearm. Blood Press. 2001, 10, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Pallicer, J.M.; Calvet, C.; Port, A.; Rosés, M.; Ràfols, C.; Bosch, E. Extension of the liquid chromatography/quantitative structure–property relationship method to assess the lipophilicity of neutral, acidic, basic and amphotheric drugs. J. Chromatogr. A 2012, 1240, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Adlard, M.; Okafo, G.; Meenan, E.; Camilleri, P. Rapid estimation of octanol-water partition coefficients using deoxycholate micelles in capillary electrophoresis. J. Chem. Soc. Chem. Commun. 1995, 24, 2473–2670. [Google Scholar] [CrossRef]
- Pallicer, J.M.; Rosés, M.; Ràfols, C.; Bosch, E.; Pascual, R.; Port, A. Evaluation of log Po/w values of drugs from some molecular structure calculation software. ADMET DMPK 2014, 2, 107–114. [Google Scholar] [CrossRef]
- Molinspiration Cheminformatics. Available online: https://www.molinspiration.com/cgi-bin/properties (accessed on 15 January 2019).
- Bober, K.; Bębenek, E.; Boryczka, S. Application of TLC for Evaluation of the Lipophilicity of Newly Synthetized Esters: Betulin Derivatives. J. Anal. Metod. Chem. 2019, 2019, 7. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Lipophilicity Parameters | Antiparasitic Drugs: | |||
---|---|---|---|---|
Metronidazole | Ornidazole | Secnidazole | Tinidazole | |
AlogPs | −0.15 | 0.37 | 0.25 | −0.41 |
AC logP | −0.19 | 0.39 | 0.21 | −0.20 |
milogP | −0.47 | 0.12 | -0.10 | −0.06 |
AlogP | −0.34 | 0.36 | 0.04 | 0.15 |
MlogP | 0.44 | 1.13 | 0.80 | 1.00 |
XlogP2 | −0.14 | 0.66 | 0.32 | 0.74 |
XlogP3 | −0.02 | 0.60 | 0.22 | −0.36 |
RMWS(a) a | 0.65 | 1.22 | 0.95 | 0.89 |
RMWS(m) b | 0.91 | 1.46 | 1.26 | 1.17 |
RMWO(a) c | 0.94 | 1.42 | 1.21 | 1.11 |
RMWO(m) d | 1.21 | 1.92 | 1.72 | 1.69 |
φ0(m) e | 0.564 | 0.676 | 0.656 | 0.612 |
φ0(a) f | 0.398 | 0.565 | 0.503 | 0.463 |
Lipophilicity Parameters | Antihypertensive Drugs: | |||
---|---|---|---|---|
Nilvadipine | Felodipine | Isradipine | Lacidipine | |
AlogPs | 2.97 | 4.36 | 3.00 | 5.18 |
AC logP | 2.63 | 4.03 | 3.47 | 4.33 |
milogP | 3.72 | 4.80 | 3.81 | 5.46 |
AlogP | 2.09 | 3.55 | 2.17 | 3.82 |
MlogP | 1.72 | 3.22 | 1.72 | 3.09 |
XlogP2 | 2.76 | 4.15 | 4.12 | 4.83 |
XlogP3 | 2.87 | 3.86 | 4.28 | 4.55 |
RMWS(a) a | 4.07 | 3.75 | 3.54 | 4.51 |
RMWS(m) b | 3.66 | 4.27 | 3.13 | 5.01 |
RMWO(a) c | 6.28 | 5.57 | 5.67 | 6.63 |
RMWO(m) d | 5.57 | 6.57 | 5.08 | 6.89 |
φ0(m) e | 0.886 | 0.929 | 0.837 | 0.937 |
φ0(a) f | 0.764 | 0.775 | 0.751 | 0.793 |
Lipophilicity Parameters | Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): | ||||||
---|---|---|---|---|---|---|---|
Mefenamic Acid | Indomethacin | Nabumetone | Phenylbutazone | Carprofen | Ketoprofen | Flurbiprofen | |
AlogPs | 4.58 | 4.25 | 3.41 | 2.81 | 4.09 | 3.29 | 3.57 |
AC logP | 4.01 | 3.83 | 3.56 | 3.29 | 3.79 | 2.99 | 3.46 |
milogP | 4.77 | 3.99 | 3.40 | 4.56 | 4.32 | 3.59 | 4.05 |
AlogP | 3.96 | 4.21 | 2.80 | 3.95 | 4.09 | 3.34 | 3.66 |
MlogP | 3.47 | 3.32 | 3.04 | 3.70 | 3.18 | 3.37 | 3.89 |
XlogP2 | 4.16 | 4.18 | 3.06 | 3.71 | 3.79 | 3.22 | 3.76 |
XlogP3 | 5.12 | 4.27 | 3.08 | 3.16 | 4.05 | 3.12 | 4.16 |
RMWS(a) a | 2.61 | 2.57 | 3.08 | 1.72 | 2.56 | 1.26 | 1.87 |
RMWS(m) b | 2.49 | 2.19 | 3.12 | 1.84 | 2.34 | 1.47 | 1.98 |
RMWO(a) c | - | - | - | - | - | - | - |
RMWO(m) d | 3.74 | 4.08 | 2.52 | 3.54 | 2.77 | 3.76 | 2.26 |
φ0(m) e | 0.865 | 0.790 | 0.903 | 0.686 | 0.820 | 0.687 | 0.771 |
φ0(a) f | 0.789 | 0.747 | 0.787 | 0.715 | 0.754 | 0.640 | 0.930 |
Drug | logPexp | |
---|---|---|
Antiparasitic drugs: | ||
Metronidazole | –0.22 [34] –0.10 [35] | |
–0.02 [36] | 0.10 (± 0.44) | |
0.75 [37] | ||
Ornidazole | 0.23 [34] | |
0.59 [38] | 0.41 (± 0.25) | |
Secnidazole | 0.22 [33] | |
Tinidazole | –0.35 [39] | |
0.70 [40] | 0.18 (± 0.74) | |
Antihypertensive drugs: | ||
Nilvadipine | - | |
Felodipine | 3.86 [6] | |
4.46 [41] | 4.16 (± 0.42) | |
Isradipine | 4.28 [6] | |
Lacidipine | - | |
Non-steroidal anti-inflammatory drugs NSAIDs: | ||
Mefenamic acid | 5.12 [39] | |
Indomethacin | 4.10 [42] | |
4.27 [36] | 4.18 (± 0.12) | |
Nabumetone | 3.08 [43] | |
Phenylbutazone | 3.16 [36] | |
Carprofen | - | |
Ketoprofen | 3.12 [36] | |
3.14 [44] | 3.13 (± 0.01) | |
Flurbiprofen | 3.84 [42] | |
4.16 [36] | 4.00 (± 0.23) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyka-Pająk, A.; Parys, W.; Dołowy, M. Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs. Molecules 2019, 24, 3187. https://doi.org/10.3390/molecules24173187
Pyka-Pająk A, Parys W, Dołowy M. Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs. Molecules. 2019; 24(17):3187. https://doi.org/10.3390/molecules24173187
Chicago/Turabian StylePyka-Pająk, Alina, Wioletta Parys, and Małgorzata Dołowy. 2019. "Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs" Molecules 24, no. 17: 3187. https://doi.org/10.3390/molecules24173187
APA StylePyka-Pająk, A., Parys, W., & Dołowy, M. (2019). Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs. Molecules, 24(17), 3187. https://doi.org/10.3390/molecules24173187