Cordidepsine is A Potential New Anti-HIV Depsidone from Cordia millenii, Baker
Abstract
:1. Introduction
2. Results
2.1. Identification of Isolated Compounds
2.2. Identification of Hemzi-Synthetic Derivatives
2.3. Biological activities
2.3.1. Anti-HIV Activity
2.3.2. Antimicrobial Activity
2.3.3. Cytotoxicity Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Materials
3.3. Extraction and Isolation of Compounds from Cordia millenii Plant Materials
3.4. Acetylation Reaction of Compounds 4 and 5
3.5. Compound Identification
3.6. HIV-1 Integrase Strand Transfer Reaction Assay
3.7. Antibacterial Activity
3.8. Cytotoxicity Activity
3.9. X-ray Diffraction Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Siwe-Noundou, X.; Musyoka, T.M.; Vuyani, M.; Ndinteh, D.T.; Mnkandhla, D.; Hoppe, H.; Özlem, T.B.; Krause, R.W.M. Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches. Sci. Rep. 2019, 9, 4718. [Google Scholar] [CrossRef] [PubMed]
- Cameroon Population Based HIV Impact Assessment (CAMPHIA). Summary Sheet: Primilary Fundings. 2018. Available online: https//phia.icap.columbia.edu/…/3471CAMPHIA Cameroon-SS_A4_v13_requests_7.25.18.pdf (accessed on 2 May 2019).
- United Nations Acquired Immune Deficiency Syndrome (UNAIDS). HIV-Related Opportunistic Diseases: UNAIDS Technical Update. 1994. Available online: http://data.unaids.org/publications/irc-pub05/opportu_en.pdf (accessed on 2 May 2019).
- World Health Organization (WHO). WHO Model Prescribing Information-Drugs Used in Bacterial Infections; WHO: Geneva, Switzerland, 2001; pp. 1–165. Available online: http://www.who.int/iris/handle/10665/42372.pdf (accessed on 02 May 2019).
- Cordia millenii (Prota). Fiche de Protabase (Ressources végétales de l’Afrique tropicale). 2010. Available online: http://uses.plantnet-project.org/en/Cordia_millenii_(prota) (accessed on 25 May 2019).
- Focho, D.A.; Muh, C.N.; Mendi, G.A.; Fongod, A.N.; Fonge, B.A. Ethnobotanical survey of trees in Fundong, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 2009, 5, 1–12. [Google Scholar] [CrossRef]
- Ezeonu, C.S.; Ejikeme, C.M. Qualitative and quantitative determination of phytochemical contents of indigenous Nigeria softwoods. New J. Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Moir, M.; Thomson, R.H.; Hausen, B.M.; Simatupa, M.H. Cordiachromes: A new group of terpenoid quinones from Cordia spp. J. Chem. Soc. 1972, 166, 363–364. [Google Scholar] [CrossRef]
- Oza, M.; Kulkarni, Y.A. Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus Cordia (Boraginaceae). J. Pharm. Pharmacolo. 2017, 69, 755–789. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Kaur, R.; Malasoni, R.; Gupta, M.M. Lupeol ester from Clerodendrum phlomidis L. Indian J. Chem. 2008, 4B, 470–472. [Google Scholar] [CrossRef]
- Babady-Byla; Werner, H. Triterpenes and 1-(ω-hydroxyceratyl)glycerols from pentaclethra eetveldeana root bark. Phytochemistry 1996, 42, 501–504. [Google Scholar] [CrossRef]
- Djemgou, P.C.; Gatsing, D.; Tchuendem, M.; Ngadjui, B.T.; Tane, P.; Ahmed, A.A.; Gamal-Eldeen, A.M.; Adoga, G.I.; Hirata, T.; Mabry, T.J. Antitumor and immunostimulatory activity of two chromones and other constituents from Cassia petersiana. Nat. Prod. Comm. 2006, 1, 961–968. [Google Scholar] [CrossRef]
- Shahlaei, M.; Ghanadian, S.M.; Ayatollahi, A.M.; Mesaik, M.A.; Abdalla, O.M.; Afsharypour, S.; Rabbani, M. Molecular modeling, structure activity relationship and immunomodulatory properties of some lupeol derivatives. Med. Chem. Res. 2013, 22, 1795–1803. [Google Scholar] [CrossRef]
- Rao, G.V.; Annamalai, T.; Mukhopadhyay, T. Chemical examination and biological studies on the bark of Crataeva nurvala. Pharmacogn. J. 2011, 3, 1–4. [Google Scholar] [CrossRef]
- Begum, F.; Nahar, S.K.; Rashid, M.A. Secondary metabolites from different extractives of Stereospermum suaveolens. Dhaka Univ. J. Pharm. Sci. 2014, 13, 31–36. [Google Scholar] [CrossRef]
- Malca Garcia, G.R.; Hennig, L.; Sieler, J.; Bussmann, L. Constituents of Corynaea crassa “Peruvian Viagra”. Braz. J. Pharmacogn. 2015, 25, 92–97. [Google Scholar] [CrossRef]
- Okeye, N.N.; Ajaghaku, L.D.; Okeke, H.H.; Ilodigwe, E.E.; Nworu, C.S.; Okeye, F.B.C. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 2014, 52, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Z.; Wang, C.J. Isolation, characterization and analgesic activity of natural allantoin from Portulaca oleracea seed. Mod. Chem. Appl. 2018, 8, 1–3. [Google Scholar] [CrossRef]
- Aissa, I.; Sghair, R.M.; Bouaziz, M.; Laouini, D.; Sayadi, S.; Gargouri, Y. Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. Lipids Health Dis. 2012, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ridhay, A.; Noor, A.; Soekamto, N.H.; Harlim, T.; Altena, I.V. A stigmasterol glycoside from the root wood of Melochia umbellata (Houtt) Stapf var. degrabrata K. Indo. J. Chem. 2012, 12, 100–103. [Google Scholar] [CrossRef]
- Ouyang, J.; Mao, Z.; Guo, H.; Xie, Y.; Cui, Z.; Sun, J.; Wu, H.; Wen, X.; Wang, J.; Shan, T. Mollicellins O-R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10. Molecules 2018, 23, 3218. [Google Scholar] [CrossRef]
- Dong-Lin, Z.; Chang-Lun, S.; Chao-Yin, W.; Mei, W.; Lu-Jia, Y.; Chang-Yun, W. Naphthalenones and depsidones from a sponge-derived strain of the fungus Corynespora cassiicola. Molecules 2016, 21, 160. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Z.; Lui, Y.; Lu, Y.; He, L.; She, Z. New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea. Beilstein J. Org. Chem. 2015, 11, 1187–1193. [Google Scholar] [CrossRef]
- Varughese, T.; Riosa, N.; Higginbotham, S.; Arnold, E.A.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla Rios, L. Antifungal depsidone metabolites from Cordyceps dipterigena and endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett. 2012, 53, 1624–1626. [Google Scholar] [CrossRef]
- Ngoupayo, J.; Tabopda, K.T.; Shaiq, M.A.; Tsamo, E. α-Glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Chem. Pharm. Bull. 2008, 56, 1466–1469. [Google Scholar] [CrossRef]
- Jeannerat, D. Rapid multidimensional NMR: High resolution by spectral aliasing. Encycl. Magn. Reson. 2011. [Google Scholar] [CrossRef]
- Pastorino, C.; Gamba, Z. Test of a simple and flexible S8 model molecule in α-S8 crystals. Chem. Phys. Lett. 2000, 319, 20–26. [Google Scholar] [CrossRef]
- Hapuarachchi, K.K.; Wen, T.C.; Jeewon, R.; Wu, X.L.; Kang, J.C. Mycosphere Essays 15. Ganoderma lucidum—Are the beneficial medical properties substantiated? Mycosphere 2016, 7, 687–715. [Google Scholar] [CrossRef]
- Nicklaus, M.C.; Neamati, N.; Hong, H.; Mazumder, A.; Sunder, S.; Chen, J.; Milne, G.W.A.; Pommier, Y. HIV-integrase pharmacophore: Discovery of inhibitors through three-dimensional database searching. J. Med. Chem. 1997, 40, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Nicklaus, M.C.; Milne, G.W.A.; Proksa, B.; Pommier, Y. Depsines and depsidones as inhibitors of HIV-1 integrase: Discovery of inhibitors through 3D database searching. J. Med. Chem. 1997, 40, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Shai, L.J.; McGaw, L.J.; Aderogba, M.A.; Mdee, L.K.; Eloff, J.N. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves. J. Ethnopharm. 2008, 119, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Al-Homaidan, A.A.; Ibraheem, I.B.M.; Al-Othman, M.R.; Hatamleh, A.A. Antibacterial β-amyrin isolated from Laurencia microcladia. Arabian J. Chem. 2015, 8, 32–37. [Google Scholar] [CrossRef]
- Po-Wei, T.; De castro-Cruz, K.A.; Chien-Chang, S.; Ragasa, C.Y. Chemical constituents of Broussonetia luzonicus. Pharmacogn. J. 2012, 4, 1–4. [Google Scholar] [CrossRef]
- Siwe-Noundou, X.; Ndinteh, D.T.; Olivier, D.K.; Mnkandhla, D.; Isaacs, M.; Muganza, F.M.; Mbafor, J.T.; Van Vuuren, S.F.; Patnala, S.; Hoppe, H.; et al. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. S. Afr. J. Bot. 2018, 122, 498–503. [Google Scholar] [CrossRef]
- Pettit, R.K.; Weber, C.A.; Kean, M.J.; Hoffmann, H.; Pettit, G.R.; Tan, R.; Franks, K.S.; Horton, M.L. Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob. Agents Chemother. 2005, 49, 2612–2617. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELX-97. Cryst. Struct. Refinement 1997, 199. [Google Scholar]
Sample Availability: Samples of the compounds 3–13 are available from the authors. |
Position | δ (1H) (mult) | δ (13C) | HMBC | NOESY |
---|---|---|---|---|
1 | - | 152.7 | - | - |
2 | 6.85 (1H, s) | 117.4 | C-3, C-11a, C-12, C-14 | H-9 |
3 | - | 164.0 | - | - |
4 | - | 110.9 | - | - |
4a | - | 164.8 | - | - |
5a | - | 142.5 | - | - |
6 | - | 143.4 | - | - |
7 | - | 122.8 | - | - |
8 | - | 154.7 | - | - |
9 | 7.08 (1H, s) | 107.7 | C-5a, C-7, C-8, C-11, C-13 | H-2, OCH3 |
9a | - | 161.0 | - | - |
11 | - | 166.1 | - | - |
11a | - | 111.9 | - | - |
12 | 2.45 (3H, s) | 21.7 | C-1, C-2, C-4a, C-11a | H-13 |
13 | 2.19 (3H, s) | 9.8 | C-6, C-7, C-8 | H-12 |
14 | 10.43 (1H, s) | 193.9 | C-4, C-4a | - |
OCH3 | 3.83 (3H, s) | 56.3 | C-8 | H-9 |
14 | 15 | |||||||
---|---|---|---|---|---|---|---|---|
Position | δ (1H) (mult, J (Hz) | δ(13C) | HMBC | COSY | δ (1H) (mult, J (Hz) | δ(13C) | HMBC | COSY |
1 | - | 173.3 | - | - | - | 173.3 | - | - |
2 | 2.29 (2H, t, J = 7.5) | 34.0 | C-1 | - | 2.29 (2H, t, J = 7.5) | 34.0 | C-1 | - |
3-25 | 1.23–1.60 [(2H)n, m] | 28.5–29.7 | - | - | 1.23–1.61 [(2H)n, m] | 24.8-29.6 | C-26 | H-26 |
26 | 4.03 (2H, t, J = 6.7) | 64.6 | C-1’’ | - | 0.86 (3H, t, J = 7.0) | 14.1 | - | H-25 |
1’ | 4.13 (2H, m) | 62.2 | C-1 | H-2’ | 4.27 (2H, m) | 61.9 | C-1 | H-2’ |
2’ | 5.23 (1H, m) | 69.1 | C-3’’ | H-1’, H-3’ | 5.23 (1H, m) | 69.1 | C-1’’ | H-1’, H-3’ |
3’ | 4.28 (2H, m) | 61.9 | C-5’’ | H-2’ | 4.13 (2H, m) | 62.3 | C-3’’ | H-2’ |
1’’ | - | 171.2 | - | - | - | 170.0 | - | - |
2’’ | 2.02 (3H, s) | 20.6 | - | - | 2.06 (3H, s) | 21.0 | C-1’’ | - |
3’’ | - | 170.1 | - | - | - | 170.5 | - | - |
4’’ | 2.05 (3H, s) | 20.8 | C-3’’ | - | 2.05 (3H, s) | 20.8 | C-3’’ | - |
5’’ | - | 170.5 | - | - | - | - | - | - |
6’’ | 2.06 (3H, s) | 21.0 | - | - | - | - | - | - |
Compounds | Name | IC50 |
---|---|---|
1 | Cordidepsine | ~ 4.65 |
11 | Allantoin | ~ 412.94 |
Reference | Chicoric acid | 0.33 |
Code | Microorganisms Tested a | |||||
---|---|---|---|---|---|---|
E. coli | B. subtilis | S. aureus | P. aeruginosa | S. typhi | ||
EtOAc fraction of roots | RCM-A | NI | 49.45 | NI | NI | NI |
EtOAc extract of stem barks | TCM-H | NI | NI | 65.2 | NI | NI |
EtOAc fraction of leaves | FCM | NI | NI | NI | NI | NI |
Reference | Tetracycline | - | 92.00 | 89.00 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dongmo Zeukang, R.; Siwe-Noundou, X.; Tagatsing Fotsing, M.; Tabopda Kuiate, T.; Mbafor, J.T.; Krause, R.W.M.; Choudhary, M.I.; Atchadé, A.d.T. Cordidepsine is A Potential New Anti-HIV Depsidone from Cordia millenii, Baker. Molecules 2019, 24, 3202. https://doi.org/10.3390/molecules24173202
Dongmo Zeukang R, Siwe-Noundou X, Tagatsing Fotsing M, Tabopda Kuiate T, Mbafor JT, Krause RWM, Choudhary MI, Atchadé AdT. Cordidepsine is A Potential New Anti-HIV Depsidone from Cordia millenii, Baker. Molecules. 2019; 24(17):3202. https://doi.org/10.3390/molecules24173202
Chicago/Turabian StyleDongmo Zeukang, Rostanie, Xavier Siwe-Noundou, Maurice Tagatsing Fotsing, Turibio Tabopda Kuiate, Joseph Tanyi Mbafor, Rui W. M. Krause, Muhammad Iqbal Choudhary, and Alex de Théodore Atchadé. 2019. "Cordidepsine is A Potential New Anti-HIV Depsidone from Cordia millenii, Baker" Molecules 24, no. 17: 3202. https://doi.org/10.3390/molecules24173202
APA StyleDongmo Zeukang, R., Siwe-Noundou, X., Tagatsing Fotsing, M., Tabopda Kuiate, T., Mbafor, J. T., Krause, R. W. M., Choudhary, M. I., & Atchadé, A. d. T. (2019). Cordidepsine is A Potential New Anti-HIV Depsidone from Cordia millenii, Baker. Molecules, 24(17), 3202. https://doi.org/10.3390/molecules24173202