Active Anti-Inflammatory and Hypolipidemic Derivatives of Lorazepam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Activity
2.2.1. In Vivo Experiments
Effect of Compounds on Acute Inflammation in Rats
Effect of Compounds on Hyperlipidemia in Rats
2.2.2. In Vitro Experiments
Antioxidant Activity
Inhibition of Lipoxygenase
3. Materials and Methods
3.1. General
3.2. Synthesis
General Method for the Synthesis of Compounds 1–9
3.3. Effect on Carrageenan-Induced Rat Paw Oedema
3.4. Effect on Plasma Total Cholesterol, Triglyceride and LDL-cholesterol Levels
3.5. Effect on Lipid Peroxidation
3.6. Interaction with the Stable Radical 1,1-diphenyl-2-picrylhydrazyl (DPPH)
3.7. Effect on Lipoxygenase Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pantelidou, M.; Tsiakitzis, K.; Rekka, E.A.; Kourounakis, P.N. Biologic stress, oxidative stress, and resistance to drugs: What is hidden behind. Molecules 2017, 22, 307. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Goyal, R. Possible involvement of GABAergic modulation in the protective effect of gabapentin against immobilization stress-induced behavior alterations and oxidative damage in mice. Fundam. Clin. Pharmacol. 2007, 21, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Guo, F.; Wu, H.L.; Wang, Y.; Liu, J.S. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway. Mol. Med. Rep. 2017, 15, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Apryatin, S.A.; Sidorova, Y.S.; Shipelin, V.A.; Balakina, A.; Trusov, N.V.; Mazo, V.K. Neuromotor activity, anxiety and cognitive function in the in vivo model of alimentary hyperlipidemia and obesity. Bull. Exp. Biol. Med. 2017, 163, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Gancheva, S.; Galunska, B.; Zhelyazkova-Savova, M. Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: Is there a role for lipid peroxidation? Int. J. Exp. Pathol. 2017, 98, 296–306. [Google Scholar] [CrossRef]
- Wood, M.R.; Kim, J.J.; Han, W.; Dorsey, B.D.; Homnick, C.F.; DiPardo, R.M.; Kuduk, S.D.; MacNeil, T.; Murphy, K.L.; Lis, E.V.; et al. Benzodiazepines as potent and selective bradykinin B1 antagonists. J. Med. Chem. 2003, 46, 1803–1806. [Google Scholar] [CrossRef]
- Tsiakitzis, K.C.; Rekka, E.A.; Kourounakis, A.P.; Kourounakis, P.N. Novel compounds designed as antistress agents. J. Med. Chem. 2009, 52, 7315–7318. [Google Scholar] [CrossRef]
- Akbari, M.; Ostadmohammadi, V.; Tabrizi, R.; Mobini, M.; Lankarani, K.B.; Moosazadeh, M.; Heydari, S.T.; Chamani, M.; Kolahdooz, F.; Asemi, Z. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. (Lond) 2018, 15, 39. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Kourounakis, P.N.; Rekka, E.A. Anti-inflammatory and hypolipidemic effect of novel conjugates with trolox and other antioxidant acids. Med. Chem. 2017, 13, 214–225. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharm. 2015, 47, 292–298. [Google Scholar]
- Fernández Hurst, N.; Zanetti, S.R.; Báez, N.S.; Bibolini, M.J.; Bouzat, C.; Roth, G.A. Diazepam treatment reduces inflammatory cells and mediators in the central nervous system of rats with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2017, 313, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, R.; Paulino, C.A.; Malucelli, B.E.; Palermo-Neto, J. Effects of high doses of diazepam on carrageenin-induced paw edema in rats. Braz J. Med. Biol. Res. 1996, 29, 1525–1529. [Google Scholar] [PubMed]
- Ziakas, G.N.; Rekka, E.A.; Gavalas, A.M.; Eleftheriou, P.T.; Kourounakis, P.N. New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. 2006, 14, 5616–5624. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Kawata, A.; Katayama, T.; Fujisawa, S. Anti-inflammatory activity of the artificial antioxidants 2-tert-butyl-4-methoxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP), and their various combinations. In Vivo 2015, 29, 197–206. [Google Scholar] [PubMed]
- El-Shitany, N.A.; El-Masry, S.A.; El-Ghareib, M.A.; El-Desoky, K. Thioctic acid protects against carrageenan-induced acute inflammation in rats by reduction in oxidative stress, downregulation of COX-2 mRNA and enhancement of IL-10 mRNA. Fundam. Clin. Pharm. 2010, 24, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zarzecki, M.S.; Araujo, S.M.; Bortolotto, V.C.; de Paula, M.T.; Jesse, C.R.; Prigol, M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep. 2014, 1, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda-Arriaga, R.; Alvarez-Idaboy, J.R. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. J. Chem Inf Model. 2014, 54, 1642–1652. [Google Scholar] [CrossRef] [PubMed]
- Theodosis-Nobelos, P.; Kourti, M.; Gavalas, A.; Rekka, E.A. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity. Bioorg Med. Chem. Lett. 2016, 26, 910–913. [Google Scholar] [CrossRef]
- Reddy, K.K.; Vidya Rajan, V.K.; Gupta, A.; Aparoy, P.; Reddanna, P. Exploration of binding site pattern in arachidonic acid metabolizing enzymes, Cyclooxygenases and Lipoxygenases. BMC Res. Notes 2015, 8, 152. [Google Scholar] [CrossRef]
- Manev, R.; Manev, H. 5-Lipoxygenase as a putative link between cardiovascular and psychiatric disorders. Crit. Rev. Neurobiol 2004, 16, 181–186. [Google Scholar] [CrossRef]
- Tooulia, K.K.; Theodosis-Nobelos, P.; Rekka, E.A. Thiomorpholine derivatives with hypolipidemic and antioxidant activity. Arch. Pharm (Weinh.) 2015, 348, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Tsiakitzis, K.C.; Papagiouvannis, G.; Theodosis-Nobelos, P.; Tziona, P.; Kourounakis, P.N.; Rekka, E.A. Synthesis, antioxidant and anti-inflammatory effects of antioxidant acid amides with GABA and n-acyl-pyrrolidin-2-ones. Curr. Chem. Biol. 2017, 11, 127–139. [Google Scholar] [CrossRef]
- Ramirez, K.; Sheridan, J.F. Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety- and depressive- like behaviors. Brain Behav. Immun. 2016, 57, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celano, C.M.; Daunis, D.J.; Lokko, H.; Campbell, K.A.; Huffman, J.C. Anxiety disorders and cardiovascular disease. Curr. Psychiatry Rep. 2016, 18, 101. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1–9 are available from the authors. |
Compound | % Oedema Reduction |
---|---|
1 | 68 ** |
Ibuprofen | 36 * |
2 | 46 ** |
Naproxen | 11 * |
3 | 65 ** |
Ketoprofen | 47 * |
4 | 67 ** |
Indomethacin | 42 ** |
5 | 55 ** |
Tolfenamic acid | 24 ** |
6 | 39 * |
7 | 56 * |
8 | 37 * |
9 | 43 ** |
Compound | Dose i.p. (µmol/kg) | % Reduction | ||
---|---|---|---|---|
TC a | TG b | LDL-C c | ||
1 | 150 | 82 *** | 65 *** | 56 * |
1 | 50 | 44 *** | 57 ** | 43 ** |
2 | 50 | 60 *** | 71 *** | 42 *** |
4 | 50 | 59 *** | 59 *** | 60 *** |
5 | 50 | 56 *** | 57 *** | 48 *** |
6 | 150 | 82 *** | 41 ** | 60 * |
6 | 50 | 48 *** | 39 *** | 47 *** |
7 | 150 | 72 *** | 64 * | 69 * |
8 | 150 | 81 *** | 66 *** | 63 *** |
8 | 50 | 59 *** | 52 *** | 44 ** |
Simvastatin | 150 | 73 *** | - | 70 *** |
Ibuprofen | 300 | 41 *** | 38 *** | 42 *** |
Naproxen | 500 | 53 *** | 44 *** | 26 *** |
Compound | Percent Interaction with DPPH | Inhibition of Lipid Peroxidation IC50 (µΜ) | ||
---|---|---|---|---|
200 µΜ | 100 µΜ | 50 µΜ | ||
7 | 91 | 82 | 46 | 2.5 |
8 | 90 | 49 | 30 | > 100 |
Trolox | 92 | 90 | 38 | 25 |
Compound | IC50 (µΜ) or % Inhibition/µΜ |
---|---|
1 | 14%/50 µΜ |
2 | - |
3 | 84 |
4 | 86 |
5 | 22%/100 µΜ |
6 | 60 |
7 | - |
8 | 44 |
9 | 255 |
BHT | 192 |
Ibuprofen | 200 |
Ketoprofen | 220 |
Tolfenamic acid | 170 |
NDGA | 1.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodosis-Nobelos, P.; Papagiouvannis, G.; Kourounakis, P.N.; Rekka, E.A. Active Anti-Inflammatory and Hypolipidemic Derivatives of Lorazepam. Molecules 2019, 24, 3277. https://doi.org/10.3390/molecules24183277
Theodosis-Nobelos P, Papagiouvannis G, Kourounakis PN, Rekka EA. Active Anti-Inflammatory and Hypolipidemic Derivatives of Lorazepam. Molecules. 2019; 24(18):3277. https://doi.org/10.3390/molecules24183277
Chicago/Turabian StyleTheodosis-Nobelos, Panagiotis, Georgios Papagiouvannis, Panos N. Kourounakis, and Eleni A. Rekka. 2019. "Active Anti-Inflammatory and Hypolipidemic Derivatives of Lorazepam" Molecules 24, no. 18: 3277. https://doi.org/10.3390/molecules24183277
APA StyleTheodosis-Nobelos, P., Papagiouvannis, G., Kourounakis, P. N., & Rekka, E. A. (2019). Active Anti-Inflammatory and Hypolipidemic Derivatives of Lorazepam. Molecules, 24(18), 3277. https://doi.org/10.3390/molecules24183277