Effects of Seasonal Variability on the Physicochemical, Biochemical, and Nutritional Composition of Western Peninsular Malaysia Gracilaria manilaensis
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Seaweeds
2.2. Fatty Acids Compositions
2.3. Amino Acids Compositions
2.4. Mineral Composition
2.5. Vitamin Composition (mg g−1), and Chlorophyll Content (µg g−1).
2.6. Physicochemical Properties
2.7. Antimicrobial Properties
3. Discussion
4. Materials and Methods
4.1. Biomass sampling and Preparation
4.2. Estimation of Moisture and Ash
4.3. Estimation of Total Crude Protein
4.4. Amino Acid Profile
Chemical Score
4.5. Estimation of Crude Lipids
Fatty Acid Composition
4.6. Estimation of Total Carbohydrate
4.7. Estimation of Gross Calorific Value
4.8. Estimation of Total Dietary Fiber
4.9. Estimation of Chlorophyll A and B
4.10. Estimation of Vitamin Content
4.11. Mineral and Heavy Metal Analysis
4.12. Physicochemical Properties of Seaweeds
4.12.1. Swelling Capacity (SWC)
4.12.2. Water Holding Capacity (WHC)
4.12.3. Oil Holding Capacity (OHC)
4.12.4. Antimicrobial Properties
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Brzeska, J. Sustainable food security and nutrition: Demystifying conventional beliefs. Glob. Food Secur. 2016, 11, 11–16. [Google Scholar] [CrossRef]
- FAO, U. How to feed the world in 2050. In Proceedings of the Rome High-Level Expert Forum, Rome, Italy, November 2017. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, A.H.L.; Davies, S.J.; Soler-Vila, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac. 2019, 11, 458–492. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.C.; da Silva, D.C.; Sombra, V.G.; Maciel, J.S.; Feitosa, J.P.; Freitas, A.L.; de Paula, R.C. Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydr. Polym. 2013, 92, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M. AlgaeBase. World-wide electronic publication. Available online: http://www.algaebase.org (accessed on 09 March 2019).
- McHugh, D.J. Worldwide distribution of commercial resources of seaweeds including Gelidium. In International Workshop on Gelidium; Springer: Dordrecht, the Netherlands, 1991; Volume 21, pp. 19–29. [Google Scholar]
- Torres, P.; Santos, J.P.; Chow, F.; dos Santos, D.Y. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res. 2019, 37, 288–306. [Google Scholar] [CrossRef]
- Guiry, M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org/ (accessed on 15 March 2019).
- Fleurence, J. Seaweeds as food. In Seaweed in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2016; pp. 149–167. [Google Scholar]
- Yang, L.-E.; Lu, Q.-Q.; Brodie, J. A review of the bladed Bangiales (Rhodophyta) in China: History, culture and taxonomy. Eur. J. Phycol. 2017, 52, 251–263. [Google Scholar] [CrossRef]
- Radulovich, R.; Umanzor, S.; Cabrera, R.; Mata, R. Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 2015, 436, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.S.; Stévant, P.; Larssen, W.E. Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Bot. Mar. 2015, 58, 423–433. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Hayes, M. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev. Int. 2016, 32, 15–45. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Marhaeni, B.; Winanto, T.; Jeong, G.-T.; Khan, M.N.A.; Hong, Y.-K. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 2013, 25, 1957–1961. [Google Scholar] [CrossRef]
- Sade, A.; Ali, I.; Ariff, M.R.M. The seaweed industry in Sabah, east Malaysia. Jati-J. Southeast. Asian Stud. 2006, 11, 97–107. [Google Scholar]
- Sakthivel, R.; Devi, K.P. Evaluation of physicochemical properties, proximate and nutritional composition of Gracilaria edulis collected from Palk Bay. Food Chem. 2015, 174, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.; Matanjun, P. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 2017, 221, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-teles, M.T.; Carvalho, A.P.; Domingues, V.F.; Antunes, F.; Oliveira, T.A.C. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norziah, M.H.; Ching, C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Sánchez-Muniz, F. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000, 20, 585–598. [Google Scholar] [CrossRef]
- Rosemary, T.; Arulkumar, A.; Paramasivam, S.; Mondragon-Portocarrero, A.; Miranda, J.M. Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria edulis and Gracilaria corticata. Molecules 2019, 24, 2225. [Google Scholar] [CrossRef] [PubMed]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Bocanegra, A.; Bastida, S.; Benedi, J.; Rodenas, S.; Sanchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, M.; Kaeffer, B. Seaweed dietary fibres: Structure, physico-chemical and biological properties relevant to intestinal physiology. Sci. Des Aliment. (Fr.) 1997, 17, 563–584. [Google Scholar]
- Phang, S. Seaweed resources in Malaysia: Current status and future prospects. Aquat. Ecosyst. Health Manag. 2006, 9, 185–202. [Google Scholar] [CrossRef]
- Phang, S.-M.; Yeong, H.-Y.; Lim, P.-E. The seaweed resources of Malaysia. Botanica Mar. 2019, 62, 265. [Google Scholar] [CrossRef]
- Abdullah, N.S.; Muhamad, S.; Omar, I.C.; Abdullah, H. Fatty acids profiles of red seaweed, Gracilaria manilaensis. Exp. 2013, 11, 726–732. [Google Scholar]
- Andriani, Y.; Syamsumir, D.F.; Yee, T.C.; Harisson, F.S.; Herng, G.M.; Abdullah, S.A.; Orosco, C.A.; Ali, A.M.; Latip, J.; Kikuzaki, H. Biological activities of isolated compounds from three edible Malaysian red seaweeds, Gracilaria changii, G. manilaensis and Gracilaria Spp. Nat. Prod. Commun. 2016, 11, 1117–1120. [Google Scholar]
- Pang, J.-R.; Goh, V.M.-J.; Tan, C.-Y.; Phang, S.-M.; Wong, K.-H.; Yow, Y.-Y. Neuritogenic and in vitro antioxidant activities of Malaysian Gracilaria manilaensis Yamamoto & Trono. J. Appl. Phycol. 2018, 30, 3253–3260. [Google Scholar]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef]
- Mišurcová, L.; Machů, L.; Orsavová, J. Seaweed minerals as nutraceuticals. In Advances in food and nutrition research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 64, pp. 371–391. [Google Scholar]
- Bauer, A.; Kirby, W.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Rødde, R.S.H.; Vårum, K.M.; Larsen, B.A.; Myklestad, S.M. Seasonal and geographical variation in the chemical composition of the red alga Palmaria palmata (L.) Kuntze. Bot. Mar. 2004, 47, 125–133. [Google Scholar] [CrossRef]
- Ito, K.; Hori, K. Seaweed: Chemical composition and potential food uses. Food Rev. Int. 1989, 5, 101–144. [Google Scholar] [CrossRef]
- Naidoo, K.; Maneveldt, G.; Ruck, K.; Bolton, J.J. A comparison of various seaweed-based diets and formulated feed on growth rate of abalone in a land-based aquaculture system. J. Appl. Phycol. 2006, 18, 437–443. [Google Scholar] [CrossRef]
- Cox, S.; Gupta, S.; Abu-Ghannam, N. Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. LWT 2012, 47, 300–307. [Google Scholar] [CrossRef]
- Patarra, R.F.; Paiva, L.; Neto, A.I.; Lima, E.; Baptista, J. Nutritional value of selected macroalgae. J. Appl. Phycol. 2011, 23, 205–208. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT-Food Sci. Technol. 2011, 44, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Yearbook: Fishery and Aquaculture Statistics; Fao: Rome, Italy, 2016. [Google Scholar]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate composition and nutritional value of three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [PubMed]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Ansari, A.A.; Ghanem, S.M. Growth attributes and biochemical composition of Padina pavonica (L.) from the Red Sea, in response to seasonal alterations of Tabuk, Saudi Arabia. Egypt. J. Aquat. Res. 2019, 45, 139–144. [Google Scholar] [CrossRef]
- Adams, J.; Ross, A.á.; Anastasakis, K.; Hodgson, E.; Gallagher, J.; Jones, J.; Donnison, I. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol. 2011, 102, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Lima, E.; Neto, A.; Baptista, J. Seasonal variability of the biochemical composition and antioxidant properties of Fucus spiralis at two Azorean Islands. Mar. Drugs 2018, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Etemadian, Y.; Shabanpour, B.; Ramzanpour, Z.; Shaviklo, A.R.; Kordjazi, M. Nutritional and Functional Properties of Two Dried Brown Seaweeds Sirophysalis trinodis and Polycladia myricab. J. Aquat. Food Prod. Technol. 2018, 27, 219–235. [Google Scholar] [CrossRef]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Darcy-Vrillon, B. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int. J. Food Sci. Nutr. (UK) 1993, 44, S23–S35. [Google Scholar]
- Marinho, S.; Fonseca, P.; Carneiro, M.; Moreira, W. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Benjama, O.; Masniyom, P. Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Sonklanakarin J. Sci. Technol. 2012, 34, 223–230. [Google Scholar]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J. Sci. Food Agric. 2012, 92, 2500–2506. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J. Appl. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.-V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.-P.; Villaume, C.; Guéant, J.-L. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutr. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef]
- Benjama, O.; Masniyom, P. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Sonklanakarin J. Sci. Technol. 2011, 33, 575–583. [Google Scholar]
- Juneja, A.; Ceballos, R.; Murthy, G. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 2013, 6, 4607–4638. [Google Scholar] [CrossRef]
- Khairy, H.M.; El-Shafay, S.M. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 2013, 55, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Lahaye, M.; Jegou, D. Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J. Appl. Phycol. 1993, 5, 195. [Google Scholar] [CrossRef]
- Rupérez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Kumari, P.; Bijo, A.; Mantri, V.A.; Reddy, C.; Jha, B. Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 2013, 86, 44–56. [Google Scholar] [CrossRef]
- Bhaskar, N.; Kinami, T.; Miyashita, K.; Park, S.-B.; Endo, Y.; Fujimoto, K. Occurrence of conjugated polyenoic fatty acids in seaweeds from the Indian Ocean. Z. Für Nat. C 2004, 59, 310–314. [Google Scholar] [CrossRef]
- Khotimchenko, S.; Vaskovsky, V.; Titlyanova, T. Fatty acids of marine algae from the Pacific coast of North California. Bot. Mar. 2002, 45, 17–22. [Google Scholar] [CrossRef]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The red seaweed Gracilaria gracilis as a multi products source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef]
- Syad, A.N.; Shunmugiah, K.P.; Kasi, P.D. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed. Prev. Nutr. 2013, 3, 139–144. [Google Scholar] [CrossRef]
- Cian, R.E.; Fajardo, M.A.; Alaiz, M.; Vioque, J.; González, R.J.; Drago, S.R. Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Int. J. Food Sci. Nutr. 2014, 65, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.R.; Zibadi, S. Bioactive Dietary Factors and Plant Extracts in Dermatology; Springer: Berlin, Germany, 2013. [Google Scholar]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Cofrades, S.; López-Lopez, I.; Bravo, L.; Ruiz-Capillas, C.; Bastida, S.; Larrea, M.T.; Jiménez-Colmenero, F. Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci. Technol. Int. 2010, 16, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kolb, N.; Vallorani, L.; Stocchi, V. Chemical composition and evaluation of protein quality by amino acid score method of edible brown marine algae Arame (Eisenia bicyclis) and Hijiki (Hijikia fusiforme). Acta Aliment. 1999, 28, 213–222. [Google Scholar] [CrossRef]
- FAO; WHO; UNU. Amino acid requirements of adults. In Protein and Amino Acids Requirements in Human Nutrition; World Health Organization: Rome, Italy, 2007; Volume 7, pp. 135–159. [Google Scholar]
- Mišurcová, L.; Buňka, F.; Ambrožová, J.V.; Machů, L.; Samek, D.; Kráčmar, S. Amino acid composition of algal products and its contribution to RDI. Food Chem. 2014, 151, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Bo, F.; Lu, Y. Influence of copper ions and calcium ions on adsorption of CMC on chlorite. Trans. Nonferrous Met. Soc. China 2013, 23, 237–242. [Google Scholar] [CrossRef]
- El-Din, N.S.; Mohamedein, L.; El-Moselhy, K.M. Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008–2010. Environ. Monit. Assess. 2014, 186, 5865–5881. [Google Scholar] [CrossRef]
- Astorga-España, M.; Galdón, B.R.; Rodríguez, E.R.; Romero, C.D. Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile). J. Food Compos. Anal. 2015, 39, 69–76. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de composición de alimentos (Food Composition Tables); Piramide Ediciones Sa: Madrid, Spanish, 2004. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Rubio, C.; Napoleone, G.; Luis-González, G.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A.; Revert, C. Metals in edible seaweed. Chemosphere 2017, 173, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Arulkumar, A.; Nigariga, P.; Paramasivam, S.; Rajaram, R. Metals accumulation in edible marine algae collected from Thondi coast of Palk Bay, Southeastern India. Chemosphere 2019, 221, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Coultate, T.P. Food: The chemistry of its components; Royal Society of Chemistry: London, UK, 2009. [Google Scholar]
- Flores, S.R.; Dobbs, J.; Dunn, M.A. Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model. J. Food Compos. Anal. 2015, 43, 185–193. [Google Scholar] [CrossRef]
- Chen, Q.; Pan, X.-D.; Huang, B.-F.; Han, J.-L. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Sci. Rep. 2018, 8, 3578. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Evaluation of Certain Food Additives and Contaminants: Sixty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Rome, Italy, 2009. [Google Scholar]
- FAOWHOEvaluation of Certain Food Additives and Contaminants: Seventy-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Rome, Italy, 2011.
- Larrea-Marín, M.; Pomares-Alfonso, M.; Gómez-Juaristi, M.; Sánchez-Muniz, F.; De La Rocha, S.R. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. J. Food Compos. Anal. 2010, 23, 814–820. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. HealthPart. B 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Ismail, A. A need for monitoring of heavy metals and organotin compounds in the east coast of Johor. In Research and information series of Malaysian coast of Malaysia marine ecosystem; Che Abdul Rahim, M., Masri, M.A., Zaidi, C.K., Norhayati, A., Eds.; Marine Ecosystem Research Centre UKM: Bangi, Malaysia, 2008; pp. 163–176. [Google Scholar]
- Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. Bisphenol A and alkylphenols concentrations in selected mariculture fish species from Pulau Kukup, Johor, Malaysia. Mar. Pollut. Bull. 2018, 127, 536–540. [Google Scholar] [CrossRef]
- Sidi, N.; Aris, A.Z.; Mohamat Yusuff, F.; Looi, L.J.; Mokhtar, N.F. Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia. Mar. Pollut. Bull. 2018, 126, 113–118. [Google Scholar] [CrossRef]
- Verstraeten, S.V.; Aimo, L.; Oteiza, P.I. Aluminium and lead: Molecular mechanisms of brain toxicity. Arch. Toxicol. 2008, 82, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Chamannejadian, A.; Sayyad, G.; Moezzi, A.; Jahangiri, A. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran. J. Environ. Health Sci. Eng. 2013, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.J.; dos Santos, L.M.G.; Freire, A.S.; Santelli, R.E.; Braga, A.M.C.; Krauss, T.M.; Jacob, S.d.C. Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control. 2012, 23, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Almela, C.; Clemente, M.J.; Vélez, D.; Montoro, R. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 2006, 44, 1901–1908. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Wong, K.; Cheung, P.C. Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Carvalho, A.; Portela, M.; Sousa, M.; Martins, F.; Rocha, F.; Farias, D.; Feitosa, J. Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile. Braz. J. Biol. 2009, 69, 969–977. [Google Scholar] [CrossRef]
- Fleury, N.; Lahaye, M. Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombu breton): A physiological approach. J. Sci. Food Agric. 1991, 55, 389–400. [Google Scholar] [CrossRef]
- Pina-Pérez, M.C.; Rivas, A.; Martínez, A.; Rodrigo, D. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem. 2017, 235, 34–44. [Google Scholar] [CrossRef]
- Darah, I.; Tong, W.Y.; Nor-Afifah, S.; Nurul-Aili, Z.; Lim, S.H. Antimicrobial effects of Caulerpa sertularioides extract on foodborne diarrhea-caused bacteria. Eur Rev. Med. Pharm. Sci 2014, 18, 171–178. [Google Scholar]
- Lima-Filho, J.V.M.; Carvalho, A.F.F.U.; Freitas, S.M.; Melo, V.M.M. Antibacterial activity of extracts of six macroalgae from the Northeastern Brazilian coast. Braz. J. Microbiol. 2002, 33, 311–314. [Google Scholar] [CrossRef]
- Arulkumar, A.; Rosemary, T.; Paramasivam, S.; Rajendran, R.B. Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal. Agric. Biotechnol. 2018, 15, 63–71. [Google Scholar] [CrossRef]
- Deepak, P.; Sowmiya, R.; Kamaraj, C.; Josebin, M.P.D.; Aiswarya, D.; Balasubramani, G.; Amutha, V.; Perumal, P. Gc-Ms Profiling, Chemical Characterization, Antioxidant, Î ‘-Amylase And Î ‘-Glucosidase Inhibition Of Selected Seaweeds From Southeast Coast Of India: An In Vitro Approach. J. Drug Deliv. Ther. 2018, 8, 60–72. [Google Scholar] [CrossRef]
- Narasimhan, M.K.; Pavithra, S.K.; Krishnan, V.; Chandrasekaran, M. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 151–159. [Google Scholar] [CrossRef] [PubMed]
- García-Bueno, N.; Decottignies, P.; Turpin, V.; Dumay, J.; Paillard, C.; Stiger-Pouvreau, V.; Kervarec, N.; Pouchus, Y.-F.; Marín-Atucha, A.A.; Fleurence, J. Seasonal antibacterial activity of two red seaweeds, Palmaria palmata and Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. Aquat. Living Resour. 2014, 27, 83–89. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Juneng, L.; Tangang, F.T. Level and source of predictability of seasonal rainfall anomalies in Malaysia using canonical correlation analysis. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1255–1267. [Google Scholar] [CrossRef]
- Awang, H.; Daud, Z.; Hatta, M.Z.M. Hydrology properties and water quality assessment of the Sembrong Dam, Johor, Malaysia. Procedia-Soc. Behav. Sci. 2015, 195, 2868–2873. [Google Scholar] [CrossRef]
- Wong, C.L.; Liew, J.; Yusop, Z.; Ismail, T.; Venneker, R.; Uhlenbrook, S. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set. Water 2016, 8, 500. [Google Scholar] [CrossRef]
- Baharim, N.B.; Yusop, Z.; Yusoff, I.; Tahir, W.; Askari, M.; Othman, Z.; Abidin, M.R.Z. The relationship between heavy metals and trophic properties in Sembrong Lake, Johor. Sains Malays. 2016, 45, 43–53. [Google Scholar]
- Malaysia, M.D. Climate change scenarios for Malaysia 2001–2099. Malaysia Meteorological Department: Petaling Jaya, Malaysia; p. 2009.
- Daryabor, F.; Ooi, S.H.; Samah, A.A.; Akbari, A. Dynamics of the water circulations in the southern South China Sea and its seasonal transports. PLoS ONE 2016, 11, e0158415. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.R.; Baird, A.H.; Maynard, J.A.; Muttaqin, E.; Edwards, A.J.; Campbell, S.J.; Yewdall, K.; Affendi, Y.A.; Chou, L.M. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 2012, 7, e33353. [Google Scholar] [CrossRef]
- Daryabor, F.; Tangang, F.; Juneng, L. Simulation of southwest monsoon current circulation and temperature in the east coast of Peninsular Malaysia. Sains Malays. 2014, 43, 389–398. [Google Scholar]
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- May-Lin, B.Y.; Ching-Lee, W. Seasonal growth rate of Sargassum species at Teluk Kemang, Port Dickson, Malaysia. J. Appl. Phycol. 2013, 25, 805–814. [Google Scholar] [CrossRef]
- Kraufvelin, P.; Lindholm, A.; Pedersen, M.F.; Kirkerud, L.A.; Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 2010, 157, 29–47. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of AOAC International; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. J. Appl. Phycol. 2016, 28, 3575–3585. [Google Scholar] [CrossRef]
- Zhou, A.Y.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts. Food Chem. 2015, 186, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Heems, D.; Luck, G.; Fraudeau, C.; Verette, E. Fully automated precolumn derivatization, on-line dialysis and high-performance liquid chromatographic analysis of amino acids in food, beverages and feedstuff. J. Chromatogr. A 1998, 798, 9–17. [Google Scholar] [CrossRef]
- Gosch, B.J.; Magnusson, M.; Paul, N.A.; de Nys, R. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Gcb Bioenergy 2012, 4, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chem. 2010, 122, 285–291. [Google Scholar] [CrossRef]
- James, C.S. Analytical chemistry of foods; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Carefoot, T. Calorimetry. Handbook of Phycological Methods. Ecological Field Methods: Macroalgae; Cambridge Univ. Press: Cambridge, UK, 1985; pp. 479–491. [Google Scholar]
- McDermid, K.J.; Stuercke, B. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 2003, 15, 513–524. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogoń, K.; Bernaś, E.; Skrzypczak, A.; Kapusta, I. Vitamins, phenolics and antioxidant activity of culinary prepared Suillus luteus (L.) Roussel mushroom. LWT–Food Sci. Technol. 2014, 59, 701–706. [Google Scholar] [CrossRef]
- Pan, Y.; Wernberg, T.; de Bettignies, T.; Holmer, M.; Li, K.; Wu, J.; Lin, F.; Yu, Y.; Xu, J.; Zhou, C. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environ. Sci. Pollut. Res. 2018, 25, 16640–16651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, A.; Chohan, M.M.; Ahmed, D.; Ullah, N. The first report on the in vitro antimicrobial activities of extracts of leaves of Ehretia serrata. Saudi J. Biol. Sci. 2018. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Composition | G. manilaensis (NEM) | G. manilaensis (SWM) |
---|---|---|
Moisture | 9.59 ± 0.40 | 9.06 ± 0.10 |
Ash | 30.26±0.13 b | 38.48 ± 0.23 a |
Crude Lipids | 1.20 ± 0.15 | 1.13 ± 0.18 |
Crude Protein | 19.39 ± 0.12 a | 16.03 ± 0.26 b |
Pure protein | 16.38 ± 0.24 a | 12.34 ± 0.31 b |
NPN | 3.01 ± 0.50 | 3.69 ± 0.11 |
Carbohydrate | 39.56 ± 0.26 a | 35.30 ± 0.34 b |
Total Dietary Fiber | 31.07 ± 1.08 a | 22.16 ± 0.11 b |
Caloric Value (cal g−1) | 2721.67 ± 10.69 a | 2348.33 ± 9.87 b |
Fatty Acids (g 100 g−1 DW) | G. manilaenisis (NEM) | G. manilaensis (SWM) |
---|---|---|
SFAs | ||
Myristic acid (C14:0) | 2.6 b | 3.73 ± 0.06 a |
Pentadecanoic acid (C15:0) | 0.9 | ND |
Palmitic acid (C16:0) | 89.27 ± 0.21 a | 83.87 ± 0.64 b |
Heptadecanoic acid (C17:0) | 0.77 ± 0.06 | ND |
Stearic acid (C18:0) | 3.97 ± 0.06 b | 6.2 ± 0.7 a |
Total | 97.5 ± 0.05 a | 93.8 ± 0.15 b |
% of SFA in total FAs | 97.57 ± 0.05 a | 93.8 ± 0.03 b |
MUFAs | ||
Oleic acid (C18:1ῳ9 cis) | 1.47 ± 0.06 b | 6.19 ± 0.32 a |
% of MUFAs in total FAs | 1.47 ± 0.03 b | 6.19 ± 0.18 a |
PUFAs | ||
Eicosadienoic acid (C20:2 ∆11,14) | 0.97 ± 0.06 | ND |
% of PUFAs in total FAs | 0.97 ± 0.03 | - |
Total fatty acids | 99.97 ± 0.06 | 99.99 ± 0.06 |
Amino acids | G. manilaensis (NEM) | mg g−1 Protein/(AA Score (g 100 g−1) | G. manilaensis (SWM) | mg 100 g−1 Protein/AA Score (g 100 g−1) | FAO/WHO/UNU (2007) |
---|---|---|---|---|---|
Essential Amino acids | |||||
Histidine (His) | 620.98 ± 0.23 | 32.03 (200.16) | ND | ND | 16 |
Threonine (Thr) | 400.74 ± 0.29 a | 20.67 (82.67) | 231.73 ± 8.66 b | 14.46 (90.35) | 25 |
Valine (Val) | 282.21 ± 0.10 a | 14.56 (36.39) | 96.39 ± 11.80 b | 6.01 (15.03) | 40 |
Methionine (Met) | 393.13 ± 0.16 | 20.28 (88.15) | ND | ND | 23 |
Tryptophan (Try) | 4.37 ± 0.02 | 0.2254*(3.22) | ND | ND | 7 |
Phenylalanine (Phe) | 282.07± 0.09 a | 14.55 (35.48) | 85.85 ± 2.35 b | 5.36 (13.06) | 41 |
Isoleucine (Ile) | 285.34 ± 0.12 a | 14.72 (49.05) | 62.90 ± 4.30 b | 3.92 (13.08) | 30 |
Leucine (Leu) | 331.67 ± 0.17 a | 17.19 (28.04) | 58.51 ± 1.99 b | 3.65 (5.98) | 61 |
Lysine (Lys) | 239.69 ± 0.06 a | 12.36 (25.75) | 129.62 ± 6.45 b | 8.09 (16.85) | 48 |
TEAAs | 2840.20 ± 0.31 a | 146.59 | 665.02 ± 0.07 b | 41.49 | 291 |
Non-essential acids | |||||
Aspartic acid (Asp) | 9640.82 ± 0.22 a | 6984.12 ± 0.18 b | |||
Glutamic acid (Glu) | 1583.21 ± 0.54 a | 1423.74 ± 1.10 b | |||
Asparagine (Asn) | ND | ND | |||
Serine (Ser) | 304.44 ± 0.18 a | 289.97 ± 0.16 b | |||
Glutamine (Gln) | ND | ND | |||
Glycine (Gly) | 216.77 ± 0.06 b | 364.15 ± 0.11 a | |||
Arginine (Arg) | 573.41 ± 0.27 b | 830.29 ± 0.15 a | |||
Alanine (Ala) | 314.29 ± 0.18 b | 1366.05 ± 0.12 a | |||
Tyrosine (Tyr) | 499.26 ± 0.22 a | 196.47 ± 0.15 b | |||
Cysteine (Cys) | 200.82 ± 0.33 | ND | |||
Proline (Pro) | 185.14 ± 0.09 a | 123.23 ± 0.03 b | |||
∑∑NEAA | 13517.96 ± 1.13 a | 11578.01 ± 1.33 b | |||
∑AA | 16358.37 ± 1.31 a | 12243.04 ± 1.26 b | |||
EAAs/Total AA | 0.17 ± 0.14 a | 0.05 ± 0.12 b | |||
∑EAAS/Total AAs(%) | 17.36 ± 0.14 a | 5.43 ± 0.12 b | |||
∑EAAs/∑NEAAs | 0.2101 ± 0.0021 a | 0.0573 ± 0.0011 b |
Minerals (mg 100 g−1) | G. manilaensis (NEM) | G. manilaensis (SWM) | Australia (RDIs) |
---|---|---|---|
Macro Metals | |||
Calcium (Ca) | 4047.74 (32.38) | 1750.97 (14.01) | 1000 mg/day |
Magnesium (mg) | 1.16 (0.023) | 2.09 (0.042) | 400 mg/day |
Potassium (K) | 21.05(0.06) | 39.21 (0.11) | 2.8 & 3.8 g/day AI |
Sodium (Na) | 7.02 (0.02) | 1.33 (0.01) | 2.3 g/day UL |
Na/K | 0.33 | 0.03 | <0.49 |
Total | 4076.97 | 1793.60 | |
Trace Metals | |||
Copper (Cu) | 0.31 (0.25) | 0.39 (0.31) | 10 mg/day UL |
Iron (Fe) | 1512.55 (672.24) | 1346.05 (598.24) | 8–18 mg/day |
Manganese (Mn) | 142.34 (207040) | 401.81 (584455) | 5.0 & 5.5 µg/day AI |
Molybdenum (Mo) | 0.05 (8.89) | 0.03 (5.33) | 0.045mg/day |
Selenium (Se) | 0.048 (5.5) | 0.057 (6.2) | 60 &70 µg/day |
Zinc (Zn) | 16.40 (9.4) | 4.42 (2.5) | 0.8 &14 mg/day |
Chromium (Cr) | 0.26 (59.44) | 0.19 (43.43) | 25 & 35 µg/day AI |
Cobalt (Co) | 0.06 | 0.22 | |
Total | 1672.02 | 1753.17 | |
Heavy Metal/ EDIs (g 100 g−1) | WHO/FAO TWIs | ||
Arsenic (As) | 0.46 (38.33) | 0.58(48.33) | 15 µg/kg BW |
Cadmium (Cd) | 0.004 (0.71) | 0.009 (1.61) | 7 µg/kg BW |
Aluminium (Al) | 188.83 *(236.04) | 137.98*(172.48) | 1000µg/d body BW |
Lead (Pb) | 1.38 (69) | 0.536 (26.8) | 25µg/kg BW |
Composition (mg 100 g−1 DW) | G. manilaensis (NWM) | G. manilaensis (SWM) |
---|---|---|
Vitamin A (IU g−1) | Below detectable level (<1) | ND (<1) |
Vitamin B1 | Below detectable level (<1) | ND (<1) |
Vitamin B2 | 0.29 ± 0.06 | 0.38 ± 0.06 |
Vitamin D (mcg 100 g−1) | Below detectable level (<5) | ND (<5) |
Chlorophyll a | 1.25 ± 0.06 a | 1.29 ± 0.06 b |
Chlorophyll b | 9.57 ± 0.01 a | 7.07 ± 0.03 b |
Seaweed | SWC (mL g−1) | WHC (g g−1) | OHC (g g−1) | ||
---|---|---|---|---|---|
25 °C | 37 °C | 25 °C | 37 °C | 25 °C | |
G. manilaensis (NEM) | 7.15 ± 0.57 bB | 9.91 ± 0.05 aA | 9.81 ± 0.76 bB | 11.89 ± 0.37 aA | 1.97 ± 0.20 a |
G. manilaensis (SWM) | 7.92 ± 0.98 aB | 9.80 ± 0.06 bA | 9.94 ± 0.67 aA | 11.07 ± 0.57 bB | 1.59 ± 0.21 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroyehun, A.Q.; Palaniveloo, K.; Ghazali, F.; Rizman-Idid, M.; Abdul Razak, S. Effects of Seasonal Variability on the Physicochemical, Biochemical, and Nutritional Composition of Western Peninsular Malaysia Gracilaria manilaensis. Molecules 2019, 24, 3298. https://doi.org/10.3390/molecules24183298
Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S. Effects of Seasonal Variability on the Physicochemical, Biochemical, and Nutritional Composition of Western Peninsular Malaysia Gracilaria manilaensis. Molecules. 2019; 24(18):3298. https://doi.org/10.3390/molecules24183298
Chicago/Turabian StyleAroyehun, Abdul Qudus, Kishneth Palaniveloo, Farid Ghazali, Mohammed Rizman-Idid, and Shariza Abdul Razak. 2019. "Effects of Seasonal Variability on the Physicochemical, Biochemical, and Nutritional Composition of Western Peninsular Malaysia Gracilaria manilaensis" Molecules 24, no. 18: 3298. https://doi.org/10.3390/molecules24183298
APA StyleAroyehun, A. Q., Palaniveloo, K., Ghazali, F., Rizman-Idid, M., & Abdul Razak, S. (2019). Effects of Seasonal Variability on the Physicochemical, Biochemical, and Nutritional Composition of Western Peninsular Malaysia Gracilaria manilaensis. Molecules, 24(18), 3298. https://doi.org/10.3390/molecules24183298