A High Throughput Apoptosis Assay using 3D Cultured Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Autofluorescence Detection
2.2. Multiparameter Analysis for the Apoptosis Assay
3. Materials and Methods
3.1. Experimental Procedure
3.2. Cell Culture
3.3. Western Blot Assay
3.4. Multicolor Live Cell Staining and Scanning
3.5. Viability and Apoptosis Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.-J.; Bae, H.-I.; Kwon, O.K.; Choi, M.-S. Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int. J. Biol. Macromol. 2009, 45, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.M.; Chen, C.S. Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125, 3015–3024. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.C.; Mersch, S.; Deenen, R.; Schmidt, S.; Messner, I.; Schäfer, K.-L.; Baldus, S.E.; Huckenbeck, W.; Piekorz, R.P.; Knoefel, W.T.; et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS ONE 2013, 8, e59689. [Google Scholar] [CrossRef] [PubMed]
- Gamerith, G.; Rainer, J.; Huber, J.M.; Hackl, H.; Trajanoski, Z.; Koeck, S.; Lorenz, E.; Kern, J.; Kofler, R.; Kelm, J.M.; et al. 3D-cultivation of NSCLC cell lines induce gene expression alterations of key cancer-associated pathways and mimic In Vivo conditions. Oncotarget 2017, 8, 112647. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lilly, G.D.; Doty, R.C.; Podsiadlo, P.; Kotov, N.A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009, 5, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Gurski, L.A.; Petrelli, N.J.; Jia, X.; Farach-Carson, M.C. 3D matrices for anti-cancer drug testing and development. Oncol. Issues 2010, 25, 20–25. [Google Scholar] [CrossRef]
- Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 2018, 9, 6. [Google Scholar] [CrossRef]
- Lv, D.; Hu, Z.; Lu, L.; Lu, H.; Xu, X. Three-Dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol. Lett. 2017, 14, 6999–7010. [Google Scholar] [CrossRef]
- Zanella, F.; Lorens, J.B.; Link, W. High content screening: Seeing is believing. Trends Biotechnol. 2010, 28, 237–245. [Google Scholar] [CrossRef]
- Joshi, P.; Datar, A.; Yu, K.-N.; Kang, S.-Y.; Lee, M.-Y. High-content imaging assays on a miniaturized 3D cell culture platform. Toxicol. In Vitro 2018, 50, 147–159. [Google Scholar] [CrossRef]
- Kang, J.; Lee, D.W.; Hwang, H.J.; Yeon, S.-E.; Lee, M.-Y.; Kuh, H.-J. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip 2016, 16, 2265–2276. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Choi, Y.-S.; Seo, Y.J.; Lee, M.-Y.; Jeon, S.Y.; Ku, B.; Kim, S.; Yi, S.H.; Nam, D.-H. High-throughput screening (HTS) of anticancer drug efficacy on a micropillar/microwell chip platform. Anal. Chem. 2013, 86, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Doh, I.; Nam, D.-H. Unified 2D and 3D cell-based high-throughput screening platform using a micropillar/microwell chip. Sens. Actuators B Chem. 2016, 228, 523–528. [Google Scholar] [CrossRef]
- Lee, D.W.; Choi, Y.S.; Seo, Y.J.; Lee, M.Y.; Jeon, S.Y.; Ku, B.; Nam, D.H. High-Throughput, Miniaturized Clonogenic Analysis of a Limiting Dilution Assay on a Micropillar/Microwell Chip with Brain Tumor Cells. Small 2014, 10, 5098–5105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kavanagh, B.D.; Thorburn, A.M.; Camidge, D.R. Preclinical and clinical estimates of the basal apoptotic rate of a cancer predict the amount of apoptosis induced by subsequent proapoptotic stimuli. Clin. Cancer Res. 2010, 16, 4478–4489. [Google Scholar] [CrossRef] [PubMed]
- Abe-Fukasawa, N.; Otsuka, K.; Aihara, A.; Itasaki, N.; Nishino, T. Novel 3D Liquid Cell Culture Method for Anchorage-independent Cell Growth, Cell Imaging and Automated Drug Screening. Sci. Rep. 2018, 8, 3627. [Google Scholar] [CrossRef] [PubMed]
- Hristov, G.; Marttila, T.; Durand, C.; Niesler, B.; Rappold, G.A.; Marchini, A. SHOX triggers the lysosomal pathway of apoptosis via oxidative stress. Hum. Mol. Genet. 2013, 23, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Manning, E.A.; Ullman, J.G.; Leatherman, J.M.; Asquith, J.M.; Hansen, T.R.; Armstrong, T.D.; Hicklin, D.J.; Jaffee, E.M.; Emens, L.A. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 2007, 13, 3951–3959. [Google Scholar] [CrossRef]
- Song, E.K.; Tai, W.; Messersmith, W.A.; Bagby, S.; Purkey, A.; Quackenbush, K.S.; Pitts, T.M.; Wang, G.; Blatchford, P.; Yahn, R. Potent antitumor activity of cabozantinib, ac-MET and VEGFR 2 inhibitor, in a colorectal cancer patient-derived tumor explant model. Int. J. Cancer 2015, 136, 1967–1975. [Google Scholar] [CrossRef]
- Wasim, L.; Chopra, M. Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells. Biomed. Pharmacother. 2016, 84, 1393–1405. [Google Scholar] [CrossRef]
- Gu, J.J.; Hernandez-Ilizaliturri, F.J.; Kaufman, G.P.; Czuczman, N.M.; Mavis, C.; Skitzki, J.J.; Czuczman, M.S. The novel proteasome inhibitor carfilzomib induces cell cycle arrest, apoptosis and potentiates the anti-tumour activity of chemotherapy in rituximab-resistant lymphoma. Br. J. Haematol. 2013, 162, 657–669. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of chips are available from the authors. |
Drugs | Apoptosis Rate [%] at Day 2 | Cell Viability [%] at Day 7 | Drugs | Apoptosis Rate [%] at Day 2 | Cell Viability [%] at Day 7 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
1_DMSO | 0.69 | 0.01 | 99.42 | 9.16 | 37_Cabozantinib | 4.49 | 0.59 | 33.38 | 3.01 |
2_AEE788 | 0.34 | 0.10 | 61.57 | 4.03 | 38_Foretinib | 0 | 0 | 20.45 | 3.13 |
3_Afatinib | 0 | 0 | 49.98 | 2.47 | 39_Ibrutinib | 0 | 0 | 83.26 | 7.65 |
4_BMS-599626 | 0 | 0 | 84.89 | 7.01 | 40_Vemurafenib | 0 | 0 | 38.29 | 1.93 |
5_Erlotinib HCl | 0 | 0 | 47.45 | 4.65 | 41_Trametinib | 0 | 0 | 24.93 | 1.90 |
6_Dacomitinib | 0.89 | 0.19 | 87.11 | 10.32 | 42_LDE225 | 0 | 0 | 80.57 | 11.47 |
7_Gefitinib | 0 | 0 | 96.42 | 7.42 | 43_LDK378 | 0 | 0 | 17.12 | 1.48 |
8_Lapatinib | 0 | 0 | 100.23 | 2.22 | 44_LEE011 | 0 | 0 | 71.75 | 0.32 |
9_Neratinib | 0 | 0 | 65.71 | 0.96 | 45_Nilotinib | 0 | 0 | 98.56 | 3.70 |
10_CI-1033 | 0 | 0 | 77.57 | 5.42 | 46_Olaparib | 0 | 0 | 59.86 | 6.60 |
11_CO-1686 | 0 | 0 | 17.64 | 2.53 | 47_Panobinostat | 6.66 | 1.44 | 27.42 | 3.96 |
12_BKM120 | 0.92 | 0.35 | 16.56 | 2.60 | 48_Pazopanib HCl | 0 | 0 | 33.76 | 5.86 |
13_BYL719 | 2.32 | 0.22 | 34.03 | 2.95 | 49_PD 0332991 | 0 | 0 | 92.83 | 30.81 |
14_XL147 | 0 | 0 | 23.57 | 4.21 | 50_PF-04449913 | 0 | 0 | 89.99 | 9.74 |
15_Everolimus | 0 | 0 | 71.49 | 6.86 | 51_Sotrastaurin | 0 | 0 | 102.03 | 8.52 |
16_AZD2014 | 0 | 0 | 24.98 | 1.68 | 52_Sunitinib Malate | 0 | 0 | 25.59 | 17.95 |
17_PF-05212384 | 0 | 0 | 17.38 | 1.92 | 53_Tandutinib | 0 | 0 | 91.14 | 7.34 |
18_XL765 | 0 | 0 | 71.00 | 8.48 | 54_Tivozanib | 0 | 0 | 30.03 | 16.26 |
19_BEZ235 | 0 | 0 | 22.00 | 2.73 | 55_Vismodegib | 1.14 | 0.26 | 84.62 | 10.29 |
20_AZD5363 | 0 | 0 | 44.08 | 7.03 | 56_ PHA-665752 | 0 | 0 | 84.60 | 3.94 |
21_ABT-199 | 0.61 | 0.37 | 49.72 | 7.19 | 57_Dabrafenib | 0 | 0 | 73.82 | 7.10 |
22_ABT-888 | 0.00 | 0.00 | 88.16 | 16.55 | 58_Regorafenib | 0 | 0 | 21.79 | 9.13 |
23_AUY922 | 0.76 | 0.15 | 15.38 | 1.60 | 59_Bosutinib | 0 | 0 | 36.95 | 21.63 |
24_Axitinib | 2.12 | 0.10 | 56.63 | 2.39 | 60_Carfilzomib | 8.86 | 1.83 | 22.05 | 0.61 |
25_AZD4547 | 0.87 | 0.31 | 38.02 | 8.25 | 61_Ruxolitinib | 1.60 | 0.73 | 45.07 | 7.13 |
26_AZD6244 | 1.12 | 0.23 | 33.45 | 3.32 | 62_Vandetanib | 0 | 0 | 88.58 | 3.39 |
27_LGK-974 | 0 | 0 | 80.21 | 2.08 | 63_TMZ | 0 | 0 | 45.39 | 6.55 |
28_BGJ398 | 0 | 0 | 99.67 | 5.23 | 64_Amorolfine | 0 | 0 | 86.03 | 5.40 |
29_Bortezomib | 0.33 | 0.14 | 19.77 | 17.33 | 65_Mevastatin | 0 | 0 | 57.40 | 2.01 |
30_Cediranib | 8.19 | 1.17 | 27.19 | 3.64 | 66_Amiodarone | 0 | 0 | 95.74 | 1.28 |
31_Crizotinib | 0.94 | 0.06 | 40.77 | 3.93 | 67_Fluvastatin Na | 0 | 0 | 97.19 | 11.40 |
32_Dasatinib | 1.25 | 0.46 | 55.20 | 5.23 | 68_Mycophenolic acid | 0.98 | 0.52 | 43.50 | 1.93 |
33_Dovitinib | 0 | 0 | 11.78 | 1.08 | 69_Raloxifene HCl | 0 | 0 | 100.19 | 14.60 |
34_Imatinib | 0 | 0 | 115.71 | 8.27 | 70_Astemizole | 0 | 0 | 95.88 | 10.87 |
35_INCB28060 | 0 | 0 | 83.07 | 8.93 | 71_Fenretinide | 1.29 | 0.11 | 47.24 | 20.81 |
36_LY2835219 | 0 | 0 | 57.65 | 4.79 | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-Y.; Doh, I.; Lee, D.W. A High Throughput Apoptosis Assay using 3D Cultured Cells. Molecules 2019, 24, 3362. https://doi.org/10.3390/molecules24183362
Lee S-Y, Doh I, Lee DW. A High Throughput Apoptosis Assay using 3D Cultured Cells. Molecules. 2019; 24(18):3362. https://doi.org/10.3390/molecules24183362
Chicago/Turabian StyleLee, Sang-Yun, Il Doh, and Dong Woo Lee. 2019. "A High Throughput Apoptosis Assay using 3D Cultured Cells" Molecules 24, no. 18: 3362. https://doi.org/10.3390/molecules24183362
APA StyleLee, S. -Y., Doh, I., & Lee, D. W. (2019). A High Throughput Apoptosis Assay using 3D Cultured Cells. Molecules, 24(18), 3362. https://doi.org/10.3390/molecules24183362