Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolated and Derivatized Compounds from the Hexane and CHCl3/MeOH Extracts
2.2. GC-MS Analysis of Hexane Extract and Two Solids Obtained from CHCl3/MeOH Extract
2.3. UPLC-QTOF-MS Analysis of the Aqueous Extract
2.4. Antibacterial Activity
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extracts Preparation
3.4. Fractionation, Isolation, Purification, and Characterization of Compounds
3.5. Acetylation Reactions
3.6. Methylation of Oleic Acid
3.7. GC-MS Analysis
3.8. UPLC-QTOF-MS Analysis
3.9. Bacterial Strains
3.10. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cox, E.; Nambiar, S.; Baden, L. Needed: Antimicrobial Development. N. Engl. J. Med. 2019, 380, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Abat, C.; Raoult, D.; Rolain, J.-M. Are we living in an antibiotic resistance nightmare? Clin. Microbiol. Infect. 2018, 24, 568–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Vázquez, M.D.C.; Carranza-Álvarez, C.; Alonso-Castro, A.J.; González-Alcaraz, V.F.; Bravo-Acevedo, E.; Chamarro-Tinajero, F.J.; Solano, E. Ethnobotany of medicinal plants used in Xalpatlahuac, Guerrero, México. J. Ethnopharmacol. 2013, 148, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Serna, A.; López-Ferrari, A.R.; Ramírez-Morillo, I. Bromeliaceae. Flora del Bajío y Reg. Adyacentes 2009, 165, 145. [Google Scholar]
- Burt-Utley, K.; Utley, J.F.; García-Mendoza, A. Contributions toward a revision of Hechtia (Bromeliaceae, Pitcairnioideae). I. New and noteworthy species of Hechtia from Mexico. Phytoneuron 2011, 59, 1–17. [Google Scholar]
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef] [Green Version]
- Santana, C.; de Oliveira-Júnior, R.; Araújo, C.; Souza, G.; de Lima-Saraiva, S.; Guimarães, A.; da Silva Almeida, J. Phytochemical Screening, Antioxidant and Antibacterial Activity of Encholirium spectabile (Bromeliaceae). Int. J. Sci. 2012, 11, 1–19. [Google Scholar]
- De Lima-Saraiva, S.R.G.; Silva, J.C.; Branco, C.R.C.; Branco, A.; Cavalcanti Amorim, E.L.; da Silva Almeida, J.R.G. Antinociceptive effect of Encholirium spectabile: A Bromeliaceae from the Brazilian caatinga biome. Pharmacogn. Mag. 2014, 10, S655–S660. [Google Scholar] [PubMed]
- De Oliveira-Júnior, R.G.; Ferraz, C.A.A.; Souza, G.R.; Guimarães, A.L.; de Oliveira, A.P.; de Lima-Saraiva, S.R.G.; Rolim, L.A.; Rolim-Neto, P.J.; da Silva Almeida, J.R.G. Phytochemical analysis and evaluation of antioxidant and photoprotective activities of extracts from flowers of Bromelia laciniosa (Bromeliaceae). Biotechnol. Biotechnol. Equip. 2017, 31, 600–605. [Google Scholar] [CrossRef]
- Oliveira-Junior, R.G.; Souza, G.R.; Guimarães, A.L.; Oliveira, A.P.; Araújo, C.S.; Silva, J.C.; Castro, R.N. Photoprotective, antibacterial activity and determination of phenolic compounds of Neoglaziovia variegata (Bromeliaceae) by high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. Afr. J. Pharm. Pharmacol. 2015, 9, 576–584. [Google Scholar]
- Pío-León, J.F.; López-Angulo, G.; Paredes-López, O.; de Jesús Uribe-Beltrán, M.; Díaz-Camacho, S.P.; Delgado-Vargas, F. Physicochemical, Nutritional and Antibacterial Characteristics of the Fruit of Bromelia pinguin L. Plant Foods Hum. Nutr. 2009, 64, 181. [Google Scholar] [CrossRef] [PubMed]
- Romano, B.; Fasolino, I.; Pagano, E.; Capasso, R.; Pace, S.; De Rosa, G.; Milic, N.; Orlando, P.; Izzo, A.A.; Borrelli, F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol. Nutr. Food Res. 2014, 58, 457–465. [Google Scholar] [CrossRef]
- Juvik, J.O.; Holmelid, B.; Francis, W.G.; Lie Andersen, H.; De Oliveira, P.A.; Gonçalves de Oliveira Júnior, R.; Guedes da Silva Almeida, R.J.; Fossen, T. Non-Polar Natural Products from Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile (Bromeliaceae). Molecules 2017, 22, 1478. [Google Scholar] [CrossRef]
- Steingass, C.B.; Glock, M.P.; Schweiggert, R.M.; Carle, R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus L. Merr.) infructescence by HPLC-DAD-ESI-MSnand GC-MS analysis. Anal. Bioanal. Chem. 2015, 407, 6463–6479. [Google Scholar] [CrossRef]
- Altamirano, F. Memorial terapéutico de plantas Mexicanas; Imprenta del Gobierno Federal, en el ex-Arzobispado: Ciudad de México, Mexico, 1896; pp. 310–326. [Google Scholar]
- Eguiarte, L.E. Cactáceas y otras plantas nativas de la Cañada, Cuicatlán, Oaxaca. Cactáceas y Suculentas México 2005, 77, 152. [Google Scholar] [CrossRef]
- Hornung-Leoni, C.T. Avances sobre Usos Etnobotánicos de las Bromeliaceae en Latinoamérica. Boletin Latinoamericano y del Caribe de plantas Medicinales y Aromaticas 2011, 10, 297–314. [Google Scholar]
- Sandoval-Bucio, E.N.; Flores-Cruz, M.; Martinez-Bernal, A. Useful Bromeliads from Mexico. Cactáceas y Suculentas Mex. 2004, 49, 100–115. [Google Scholar]
- Fernández, V.; Guzmán-Delgado, P.; Graça, J.; Santos, S.; Gil, L. Cuticle Structure in Relation to Chemical Composition: Re-Assessing the Prevailing Model. Front. Plant Sci. 2016, 7, 427. [Google Scholar] [CrossRef] [PubMed]
- Yeats, T.H.; Rose, J.K.C. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Ogburn, R.M.; Edwards, E.J. Chapter 4—The Ecological Water-Use Strategies of Succulent Plants. In Advances in Botanical Research; Kader, J.-C., Delseny, M., Eds.; Academic Press: Waltham, MA, USA, 2010; pp. 179–225. ISBN 0065-2296. [Google Scholar]
- Lewis, N.G. Plant phenolics. In Antioxidants in Higher Plants; CRC Press: Boca Raton, FL, USA, 2017; pp. 135–169. [Google Scholar]
- Macoy, D.M.; Kim, W.Y.; Lee, S.Y.; Kim, M.G. Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnol. Rep. 2015, 9, 269–278. [Google Scholar] [CrossRef]
- Wildt, J.; Kobel, K.; Schuh-Thomas, G.; Heiden, A.C. Emissions of Oxygenated Volatile Organic Compounds from Plants Part II: Emissions of Saturated Aldehydes. J. Atmos. Chem. 2003, 45, 173–196. [Google Scholar] [CrossRef]
- Kunst, L.; Samuels, L. Plant cuticles shine: Advances in wax biosynthesis and export. Curr. Opin. Plant Biol. 2009, 12, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.-L.; Zhang, Y.-Y.; Zhao, P.; Zhou, L.; Wang, X.-B.; Huang, X.-X.; Lin, B.; Song, S.-J. Ent-Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk (Zea mays). J. Nat. Prod. 2018, 81, 1225–1234. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- González-Salvatierra, C.; Andrade, J.L.; Escalante-Erosa, F.; García-Sosa, K.; Peña-Rodríguez, L.M. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest. J. Plant Physiol. 2010, 167, 792–799. [Google Scholar] [CrossRef]
- Manetti, L.M.; Deiaporte, R.H.; Laverde, A. Metabólitos secundários da família Bromeliaceae. Quim. Nova 2009, 32, 1885–1897. [Google Scholar] [CrossRef]
- Okamura, N.; Hine, N.; Harada, S.; Fujioka, T.; Mihashi, K.; Yagi, A. Three chromone components from Aloe vera leaves. Phytochemistry 1996, 43, 495–498. [Google Scholar] [CrossRef]
- Wu, X.; Yin, S.; Zhong, J.; Ding, W.; Wan, J.; Xie, Z. Mushroom tyrosinase inhibitors from Aloe barbadensis Miller. Fitoterapia 2012, 83, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A. In vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res. 2014, 28, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Sokovic, M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res. 2015, 29, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Veneziani, R.C.S.; Ambrósio, S.R.; Martins, C.H.G.; Lemes, D.C.; Oliveira, L.C. Chapter 4—Antibacterial Potential of Diterpenoids. In Studies in Natural Products Chemistry; Atta-ur-Rahman, B.T.-S., Ed.; Elsevier: Amsterdam, Netherlands, 2017; pp. 109–139. ISBN 1572-5995. [Google Scholar]
- Sharma, R.K. Phytosterols: Wide-spectrum antibacterial agents. Bioorg. Chem. 1993, 21, 49–60. [Google Scholar] [CrossRef]
- Cho, E.J.; Choi, J.Y.; Lee, K.H.; Lee, S. Isolation of Antibacterial Compounds from Parasenecio pseudotaimingasa. Hort. Environ. Biotechnol. 2012, 53, 561–564. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Toudert, N.; Djilani, S.E.; Djilani, A. Antimicrobial activity of flavonoids of Ampelodesma mauritanica. Am. J. Sustain. Agric. 2009, 3, 227–228. [Google Scholar]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phyther. Res. 2006, 20, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Lunga, P.K.; Qin, X.-J.; Yang, X.W.; Kuiate, J.-R.; Du, Z.Z.; Gatsing, D. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complement. Altern. Med. 2014, 14, 369. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.; Horbach, R.; Deising, H.B.; Siewert, B.; Csuk, R. Synthesis and antimicrobial activity of (E) stilbene derivatives. Bioorg. Med. Chem. 2011, 19, 5155–5166. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.S.L.; Tan, L.T.; Chan, K.; Yap, W.H.; Lee, L. Resveratrol—Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Paulo, L.; Ferreira, S.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 2010, 26, 1533–1538. [Google Scholar] [CrossRef]
- Ogungbamila, F.O.; Onawunmi, G.O.; Ibewuike, J.C.; Funmilayo, K.A. Antibacterial Constituents of Ficus barteri Fruits. Int. J. Pharmacogn. 1997, 35, 185–189. [Google Scholar] [CrossRef]
- Tao, R.; Wang, C.-Z.; Kong, Z.-W. Antibacterial/Antifungal Activity and Synergistic Interactions between Polyprenols and Other Lipids Isolated from Ginkgo biloba L. Leaves. Molecules 2013, 18, 2166–2182. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Saito, T.; Yamaji, T.; Hayamizu, K.; Yanagisawa, M.; Yamamoto, O.; Matsuyama, S.; Wasada, N.; Someno, K.; Kinugasa, S.; Tamura, T.; et al. SDBS. Available online: https://sdbs.db.aist.go.jp (accessed on 26 February 2019).
- Del Río, J.C.; Marques, G.; Rodríguez, I.M.; Gutiérrez, A. Chemical composition of lipophilic extractives from jute (Corchorus capsularis) fibers used for manufacturing of high-quality paper pulps. Ind. Crops Prod. 2009, 30, 241–249. [Google Scholar] [CrossRef]
- Gade, S.; Rajamanikyam, M.; Vadlapudi, V.; Nukala, K.M.; Aluvala, R.; Giddigari, C.; Karanam, N.J.; Barua, N.C.; Pandey, R.; Upadhyayula, V.S.V.; et al. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 541–550. [Google Scholar] [PubMed]
- Kerwin, J.L.; Wiens, A.M.; Ericsson, L.H. Identification of fatty acids by electrospray mass spectrometry and tandem mass spectrometry. J. Mass Spectrom. 1996, 31, 184–192. [Google Scholar] [CrossRef]
- Kojima, H.; Sato, N.; Hatan, A.; Ogura, H. Sterol glucosides from Prunella vulgaris. Phytochemistry 1990, 29, 2351–2355. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Devadasu, C.; Srinivasa Babu, P. Isolation, Characterization, and RP-HPLC Estimation of P-Coumaric Acid from Methanolic Extract of Durva Grass (Cynodon dactylon Linn.) (Pers.). Int. J. Anal. Chem. 2015, 2015, 201386. [Google Scholar] [CrossRef]
- De Falco, B.; Incerti, G.; Bochicchio, R.; Phillips, T.D.; Amato, M.; Lanzotti, V. Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Ind. Crops Prod. 2017, 99, 86–96. [Google Scholar] [CrossRef]
- Moroyoqui-Estrella, G.; Pérez-Salas, R.; Rodríguez-Mijangos, R. A generalized rule of average for glow peak temperature of ternary alkali halide systems. Rev. Mex. Fis. 2011, 57, 154–157. [Google Scholar]
- Bocanegra-García, V.; Del Rayo Camacho-Corona, M.; Ramírez-Cabrera, M.; Rivera, G.; Garza-González, E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res. Notes 2009, 2, 95. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | RT (Min) | % Area | |
---|---|---|---|
Hex | HG1, HG2 | ||
Octanal | 10.580 | 0.09 | - |
Nonanal | 16.144 | 0.11 | - |
1-Dodecene | 21.431 | - | 0.72 |
2-(E)-Decenal | 25.918 | 0.15 | - |
1-Tetradecene | 34.148 | - | 2.37 |
1-Hexadecene | 45.946 | - | 1.37 |
Unknown | 50.143 | - | 0.02 |
12-Methyltetradecanic acid (C14:0, anteiso) | 56.817 | 0.36 | - |
Pentadecanoic acid (C15:0) | 58.400 | 2.16 | - |
Isopropyl myristate | 58.419 | 0.03 | - |
Phytone | 59.332 | 2.65 | - |
n-Nonadecane | 62.006 | 0.16 | - |
Palmitoleic acid (C16:1, ∆9) | 62.183 | 0.68 | - |
Trachylobane | 65.054 | 0.11 | - |
Palmitic acid (C16:0) | 65.881 | 4.25 | - |
5-(E)-Eicosene | 66.440 | 0.15 | - |
14-Methylpalmitic acid (C17:0, iso) | 66.748 | 2.85 | - |
n-Eicosane | 66.755 | 0.29 | - |
2-Hexyl-cyclopropaneoctanoic acid | 67.261 | 0.83 | - |
Kaur-16-ene | 67.497 | 0.16 | - |
Margaric acid (C18:0) | 68.036 | 0.75 | - |
Trans-vaccenic acid (C18:1, ∆11) | 69.632 | 0.53 | - |
n-Heneicosane | 71.366 | 3.04 | 7.34 |
Phytol | 71.918 | 1.72 | - |
Linoleic acid (C18:2, ∆9,12) | 73.842 | 8.35 | - |
Ethyl linoleate | 74.066 | 5.44 | - |
Ethyl oleate | 74.368 | 1.72 | - |
Nonadecenoic acid (C19:1, ∆13) | 74.374 | 1.64 | - |
Oleic acid (C18:1, ∆9) | 74.861 | 6.72 | - |
n-Docosane | 75.701 | 0.64 | 1.46 |
Gondonic acid (C20:1, ∆11) | 79.872 | 0.74 | - |
n-Tricosane | 80.162 | - | 6.16 |
Cyclotetracosane | 83.689 | 0.14 | - |
n-Tetracosane | 84.004 | 0.55 | 1.12 |
12-(Z)-Pentacosene | 87.591 | 0.07 | - |
n-Pentacosane | 88.005 | 2.40 | 3.82 |
Unknown | 89.528 | 3.23 | 1.24 |
9-Hexacosene | 91.381 | 0.63 | 2.27 |
n-Hexacosane | 91.676 | 0.64 | 1.28 |
12-(Z)-heptacosene | 95.033 | 0.50 | - |
n-Heptacosane | 95.243 | 1.05 | 6.63 |
Unknown | 96.747 | 3.24 | - |
Cycloocatacosane | 98.909 | - | 12.78 |
n-Octacosane | 99.040 | - | 3.00 |
Nonacosanol | 101.871 | 0.19 | - |
n-Nonacosane | 102.219 | 4.19 | 28.63 |
1-Triacontanol | 105.313 | - | 1.70 |
n-Triacontane | 105.497 | 0.33 | 2.56 |
Hentriacontane | 108.545 | 2.13 | 8.18 |
Ergosterol | 110.896 | 0.24 | - |
Campesterol | 111.573 | 5.38 | - |
Stigmasterol | 112.512 | 1.37 | - |
Hentriacontanol | 112.867 | 0.14 | - |
1,30-Triacontanediol | 113.175 | 2.78 | - |
β-Sitosterol | 114.607 | 17.97 | - |
Dotriacontenol | 114.969 | - | 7.34 |
(3β,5α)-Ergostanol | 115.921 | 0.49 | - |
Stigmast-4-en-3-one | 118.233 | 6.02 | - |
Compound | RT (min) | Molecular Formula | Experimental m/z | Error (ppm) | Means of Identification |
---|---|---|---|---|---|
3,8-Diglucosyldiosmetin | 1.967 | C28H32O16 | 625.167 | 0.93 | Foodb |
5,7-Dihydroxy-6-methoxyisoflavone 7-O-rhamnoside | 2.986 | C22H22O9 | 431.1264 | 0.73 | Foodb |
Unknown | 3.962 | - | 412.259 | - | - |
Delphinidin 3-sophoroside 5-glucoside | 4.771 | C33H41O22+ | 789.67 | −4.61 | Foodb |
Phytyl monophosphate | 5.023 | C20H39O4P | 375.1947 | 7.23 | Foodb |
Catechin 4′-methyl ether | 5.543 | C16H16O6 | 305.095 | 0.73 | Foodb |
6-tuliposide A | 5.945 | C11H18O8 | 279.1519 | −4.45 | Foodb |
Daucosterol | 6.152 | C35H60O6 | 577.86 | −4.24 | [33] |
Peonidin | 6.346 | C18H20O4+ | 301.1339 | −6.27 | Foodb |
Unknown | 6.356 | - | 325.130 | - | - |
Guanosine pentaphosphate | 6.377 | C10H12N5O17P4 | 599.123 | 1.63 | PMN |
Epicatechin 3-O-gallate | 6.421 | C22H18O10 | 443.3262 | −2.29 | Foodb |
Chlorogenoquinone | 6.442 | C18H24O7 | 353.1502 | −6.35 | Foodb |
Tetramethylquercetin | 6.474 | C19H18O7 | 359.3165 | −2.03 | Foodb |
Kaempferol 3-O-rutinoside | 6.573 | C27H30O15 | 594.159 | 1.01 | [33] |
Luteolin 7-(2′′-apiosylglucoside) | 6.643 | C26H28O15 | 581.143 | 0.73 | [33] |
Ergosterol endoperoxide | 6.714 | C28H44O3 | 429.311 | 2.53 | [33] |
1, 28-Dicaffeoyloctacosanediol | 6.761 | C46H70O8 | 751.5143 | −0.01 | Foodb |
1,26-Hexacosanediol diferulate | 6.761 | C46H70O8 | 751.507 | 0.73 | Foodb |
Proanthocyanin monogallate | 6.761 | C36H56O15 | 729.829 | −6.79 | Respect |
Epicatechin 3-O-(3-O-methylgallate) | 7.160 | C23H20O10 | 457.2491 | −1.36 | Foodb |
Piceid | 7.26 | C20H22O8 | 391.2785 | −1.40 | PhytoHub |
Cyanidin-3-O-(2′′-O-β-xylopyranosyl-β-glucopyranoside)-5-O-β-glucopyranoside | 7.274 | C32H39O20+ | 745.625 | 1.50 | Respect |
Tricin | 7.300 | C17H14O7 | 331.1676 | −8.64 | Foodb |
Kaempferol 3-triglucoside-7-rhamnoside-p-coumaroyl | 7.345 | C48H56O27 | 1065.309 | −0.90 | Respect |
Spinacetin 3-O-glucosyl-(1–>6)-[apiosyl(1–>2)]-glucoside | 7.348 | C34H42O22 | 803.684 | −4.60 | PhytoHub |
Hexosyl-hexosyl-soyasapogenol E | 7.348 | C42H68O13 | 780.47 | - | Phytohub |
Oleanolic acid 3-O-glucose(1′′–>3′)arabinose | 7.348 | C41H66O12 | 751.460 | 0.27 | Foodb |
3-O-Rutinosyl-3′-O-glucopyranosyl cyanidin | 7.382 | C33H41O20+ | 757.67 | −4.51 | [33] |
Quercetin-3-Galactoside-6′′-Rhamnoside-3′’’-Rhamnoside | 7.386 | C34H42O20 | 771.700 | −0.47 | Respect |
3,7,3′-O-Triglucopyranosyl-dephinidine | 7.386 | C33H41O22+ | 789.570 | 1.00 | [33] |
Hederagenin 3-O-hexose-pentose | 7.391 | C41H66O13 | 766.430 | 2.00 | Respect |
Prenyl caffeate | 7.413 | C14H16O4 | 249.121 | 0.24 | Foodb, PhytoHub |
Peonidin 3-sophoroside | 7.555 | C28H33O16+ | 625.177 | 0.01 | Foodb |
Unknown | 7.776 | - | 348.486 | - | - |
Trihydroxycinnamoylquinic acid | 7.801 | C16H18O10 | 371.200 | -1.10 | Respect |
Cinnamtannin B1 | 7.802 | C45H36O18 | 865.6147 | -4.17 | Phytohub |
Galloylquinic acid isomer | 7.827 | C38H40O19 | 801.220 | -1.06 | Foodb |
Agavoside B | 7.837 | C34H42O19 | 755.686 | -2.65 | Foodb |
Cyanidin 3,5,3′-tri-O-glycoside | 7.838 | C33H41O21+ | 774.595 | -3.74 | [33] |
Unknown | 7.874 | - | 674.579 | - | - |
Luteolin 7-O-(2-apiosyl-6-malonyl)-glucoside | 7.876 | C29H30O18 | 667.538 | -3.87 | Foodb |
Petunidin 3-O-(6-O-acetyl)-glucoside | 7.901 | C24H25O13+ | 522.589 | -4.53 | Foodb |
Piceatannol 4′-glucoside | 8.022 | C20H22O9 | 407.129 | 0.51 | Foodb |
Peonidin 3-rhamnoside | 8.185 | C22H23O10+ | 447.361 | -2.32 | Foodb |
Myricetin 3,3′-digalactoside | 8.228 | C27H30O18 | 643.519 | -3.69 | [33] |
Aloesol 7-glucoside | 8.248 | C19H24O9 | 397.1759 | -2.62 | Foodb |
Delphinidin 3-rutinoside 5-glucoside | 8.299 | C33H41O21+ | 774.669 | -4.48 | Foodb |
Myricitrin glucoside | 8.302 | C21H20O12 | 465.0954 | 0.74 | [33] |
Luteolin 7-O-diglucuronide | 8.341 | C27H26O18 | 639.485 | −3.65 | foodb |
Unknown | 8.856 | - | 426.729 | - | - |
3-O-Glucopyranosyl-6,3′,5′-trimethoxy-3,5,7,4′-tetrahydroxyflavone | 9.401 | C24H26O14 | 539.460 | 1.10 | [33] |
Zeaxanthin | 9.401 | C40H56O2 | 569.881 | −4.46 | PMN |
Ananaflavoside B | 10.158 | C25H28O13 | 537.3871 | 1.03 | [33] |
Isochlorogenic acid B | 10.158 | C26H26O11 | 515.483 | −3.35 | PhytoHub |
Extracts | MIC (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
S. aureus methicillin | S. epidermidis Linezolid | E. faecium Vancomycin | A. baumannii Carbapenems | P. aeruginosa Carbapenems | E. coli ESLB | K. Pneumoniae NDM-1 + | K. pneumoniae ESBL | K. Pneumoniae Oxacillin | |
Hex | >500 | >500 | >500 | >500 | >500 | 500 | 500 | 500 | 500 |
CHCl3/MeOH | >500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 |
Aqueous | >500 | >500 | >500 | >500 | >500 | 500 | 500 | 500 | 500 |
Compounds | |||||||||
5 | >200 | 200 | 200 | 200 | 200 | >200 | 200 | >200 | >200 |
5a | >200 | 200 | 200 | 100 | 200 | 200 | >200 | 200 | >200 |
6 | >200 | >200 | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
8 | >200 | 200 | 200 | >200 | >200 | >200 | >200 | >200 | >200 |
9 | >200 | 200 | 200 | 200 | 200 | >200 | >200 | >200 | >200 |
9a | >200 | >200 | 200 | 200 | 200 | >200 | >200 | >200 | >200 |
Levofloxacin | 12.5 | 6.25 | 12.5 | 12.5 | 0.78 | 25 | >50 | 0.78 | 12.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefani, T.; Garza-González, E.; Rivas-Galindo, V.M.; Rios, M.Y.; Alvarez, L.; Camacho-Corona, M.d.R. Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria. Molecules 2019, 24, 3434. https://doi.org/10.3390/molecules24193434
Stefani T, Garza-González E, Rivas-Galindo VM, Rios MY, Alvarez L, Camacho-Corona MdR. Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria. Molecules. 2019; 24(19):3434. https://doi.org/10.3390/molecules24193434
Chicago/Turabian StyleStefani, Tommaso, Elvira Garza-González, Verónica M. Rivas-Galindo, María Yolanda Rios, Laura Alvarez, and María del Rayo Camacho-Corona. 2019. "Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria" Molecules 24, no. 19: 3434. https://doi.org/10.3390/molecules24193434
APA StyleStefani, T., Garza-González, E., Rivas-Galindo, V. M., Rios, M. Y., Alvarez, L., & Camacho-Corona, M. d. R. (2019). Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria. Molecules, 24(19), 3434. https://doi.org/10.3390/molecules24193434