Hydroxyl-Group Identification Using O K-Edge XAFS in Porous Glass Fabricated by Hydrothermal Reaction and Low-Temperature Foaming
Abstract
:1. Introduction
2. Results
2.1. Preparation of H2O-Bearing Glass by Hydrothermal Reaction and Fabrication of Porous Glass by Low-Temperature Foaming
2.2. Near-IR Absorption Spectroscopy for Identification of OH− Groups and H2O Molecules in Porous Glass
2.3. O K-Edge XANES Spectroscopy of Porous Glass to Determine in-Depth Distribution of OH− Groups
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suzuki, M.; Tanaka, T.; Yamasaki, N. Use of hydrothermal reactions for slag/glass recycling to fabricate porous materials. Curr. Opin. Chem. Eng. 2014, 3, 7–12. [Google Scholar] [CrossRef]
- Suzuki, M.; Tanaka, T. Hydrothermal slag/glass chemistry for porous materials production. Key Eng. Sci. 2012, 521, 35–45. [Google Scholar] [CrossRef]
- Matamoros-Veloza, Z.; Yanagisawa, K.; Rendon-Angeles, J.C.; Yamasaki, N. Preparation of porous materials from hydrothermal hot pressed glass compacts. J. Mater. Sci. Lett. 2002, 21, 1855–1858. [Google Scholar] [CrossRef]
- Matamoros-Veloza, Z.; Yanagisawa, K.; Rendon-Angeles, J.C.; Oishi, S. The effect of hydrothermal hot-pressing parameters on the fabrication of porous ceramics using waste glass. J. Phys. Condens. Matter 2004, 16, S1361–S1372. [Google Scholar] [CrossRef]
- Nakamoto, M.; Lee, J.; Tanaka, T.; Ikeda, J.; Inagaki, S. Application of hydrothermal treatment on BF slag and waste glass for preparing lubricant materials in high strain rolling for ultrafine-grained steel production. ISIJ Int. 2005, 45, 1567–1571. [Google Scholar] [CrossRef]
- Nakamoto, M.; Lee, J.; Tanaka, T. Design of lubricants using waste slag in large strain addition strip processing for ultrafine-grained steels. Mat. Sci. Forum 2006, 512, 319–324. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Sato, S.; Tanaka, T. Fabrication of low temperature forming glass materials using hydrothermal treatment. ISIJ Int. 2008, 48, 130–133. [Google Scholar] [CrossRef]
- Tanaka, T.; Yoshikawa, T.; Suzuki, M. Design of Porous Glass & Slag Materials and Its Application to Refining. In Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago, Chile, 19–21 January 2009; Sanchez, M., Parra, R., Riveros, G., Diaz, C., Eds.; pp. 555–564. [Google Scholar]
- Yoshikawa, T.; Kasamatsu, K.; Kanata, T.; Hirai, N.; Tanaka, T.; Yamasaki, N. Fabrication of porous glass supporting silver ultrafine particles after hydrothermal treatment and microwave heating. J. Jpn. Inst. Met. 2011, 75, 665–670. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamamoto, T.; Kuwata, S.; Derin, B.; Yamasaki, N.; Tanaka, T. Fabricating porous glass with needle-shaped hydrate crystals by hydrothermal treatment of blast-furnace slag and borosilicate glass mixture. Mater. Trans. 2013, 54, 1741–1749. [Google Scholar] [CrossRef]
- Goh, C.Y.; Suzuki, M.; Tanaka, T.; Murayama, N. Fabricating porous glass using hydrothermal reaction for application to toxic ion removal from polluted water. In Proceedings of the MJIIT-JUC Joint International, Symposium 2016, Kuala Lumpur, Malaysia, 6–7 September 2016; Mohamad, S.E., Ed.; MJIIT: Kuala Lumpur, Malaysia, 2016. [Google Scholar]
- Elmes, V.K.; Edgar, B.N.; Mendham, A.P.; Coleman, N.J. Basic metallosilicate catalysts from waste green container glass. Ceram. Int. 2018, 44, 17069–17073. [Google Scholar] [CrossRef]
- Gattullo, C.E.; D’Alessandro, C.; Allegretta, I.; Porfido, C.; Spagnuolo, M.; Terzano, R. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes. J. Hazard. Mater. 2018, 344, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Kamitani, M.; Tagami, T.; Fukuya, T.; Kondo, M.; Hiki, T.; Nakahira, A. Synthesis of A-Type zeolite from flat glass recycle by hydrothermal treatments and its evaluation. Key Eng. Sci. 2014, 616, 183–187. [Google Scholar] [CrossRef]
- Ma, Q.; Cheng, H.; Yu, Y.; Huang, Y.; Lu, Q.; Han, S.; Chen, J.; Wang, R.; Fane, A.G.; Zhang, H. Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiber-Based Meshes from Waste Glass for Multifunctional Oil/Water Separation. Small 2017, 13, 1700391. [Google Scholar] [CrossRef] [PubMed]
- Duraisamy, S.; Priyadarshini, B.G. Enhancing the Optical Behavior of Glass Surface by Creation of Microstructures in Single-Step Hydrothermal Wet Etching. ChemistrySelect 2018, 3, 11494–11504. [Google Scholar] [CrossRef]
- Luo, J.; Huynh, H.; Pantano, C.G.; Kim, S.H. Hydrothermal reactions of soda lime silica glass—Revealing subsurface damage and alteration of mechanical properties and chemical structure of glass surfaces. J. Non-Cryst. Solids 2016, 452, 93–101. [Google Scholar] [CrossRef]
- Warren, B.E.; Biscoe, J. Fourier analysis of X-ray patterns of soda-silica glass. J. Am. Ceram. Soc. 1938, 21, 259–265. [Google Scholar] [CrossRef]
- Greaves, G.N.; Fontaine, A.; Lagarde, P.; Raoux, D.; Gurman, S.J. Local structure of silicate glasses. Nature 1981, 293, 611–616. [Google Scholar] [CrossRef]
- Yun, Y.H.; Bray, P.J. Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2. J. Non-Cryst. Solids 1978, 27, 363–380. [Google Scholar] [CrossRef]
- Tomozawa, M. Water in Glass. J. Non-Cryst. Solids 1985, 73, 197–204. [Google Scholar] [CrossRef]
- Kronenberg, A.K. Hydrogen speciation and chemical weakening of quartz. In Silica: Physical Behavior, Geochemistry, and Materials Applications; Heaney, P.J., Prewitt, C.T., Gibbs, G.V., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1994; Volume 29, pp. 123–176. [Google Scholar]
- Amma, S.; Kim, S.H.; Pantano, C.G. Analysis of Water and Hydroxyl Species in Soda Lime Glass Surfaces Using Attenuated Total Reflection (ATR)-IR Spectroscopy. J. Am. Ceram. Soc. 2016, 99, 128–134. [Google Scholar] [CrossRef]
- Frost, R.L.; Mako, E.; Kristof, J.; Kloprogge, J.T. Modificaiton of kaolinite surfaces through mechanochemical treatment—A mid-IR and near-IR spectroscopic study. Spectrochim. Acta A 2002, 58, 2849–2859. [Google Scholar] [CrossRef]
- Baker, G.J.; Greaves, G.N.; Surman, M.; Oversluizen, M. An oxygen XAFS study of sodium disilicate glass surfaces. Nucl. Instrum. Methods Phys. Res. B 1995, 97, 375–382. [Google Scholar] [CrossRef]
- Wang, H.M.; Henderson, G.S. Investigation of coordination number in silicate and germinate glasses using O K-edge X-ray absorption spectroscopy. Chem. Geol. 2004, 213, 17–30. [Google Scholar] [CrossRef]
- Henderson, G.S.; Neuville, D.R.; Cormier, L. An O K-edge XANES study of calcium aluminates. Can. J. Chem. 2007, 85, 801–805. [Google Scholar] [CrossRef]
- Henderson, G.S.; Neuville, D.R.; Cormier, L. An O K-edge XANES study of glasses and crystals in the CaO-Al2O3-SiO2 (CAS) system. Chem. Geol. 2009, 259, 54–62. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Henderson, G.S.; Bancroft, G.M.; Ho, R. Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model. J. Non-Cryst. Solids 2015, 409, 139–148. [Google Scholar] [CrossRef]
- Stolen, R.H.; Walrafen, G.E. Water and its relation to broken bond defects in fused silica. J. Chem. Phys. 1976, 64, 2623–2631. [Google Scholar] [CrossRef]
- Doyle, C.S.; Kendelewicz, T.; Bostick, B.C.; Brown, G.E., Jr. Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(VI)-containing aqueous solutions. Geochim. Cosmochim. Acta 2004, 68, 4287–4299. [Google Scholar] [CrossRef]
- Nagasaka, M.; Kondoh, H.; Amemiya, K.; Nambu, A.; Nakai, I.; Shimada, T.; Ohta, T. Water formation reaction on Pt (111): Near edge X-ray absorption fine structure experiments and kinetic Monte Carlo simulations. J. Chem. Phys. 2003, 119, 9233–9241. [Google Scholar] [CrossRef]
- Wu, X.L.; Xiong, S.J.; Wang, J.; Shen, J.C.; Chu, P.K. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett. 2009, 9, 4053–4060. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, L.; Jiao, J.; Zhou, J.; Xu, Y.; Zhang, H.; Jiang, Z.; Shen, B.; Wang, Z. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 2015, 3, 6517–6525. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 56–60. [Google Scholar]
- Grum, F.; Luckey, G.W. Optical sphere paint and a working standard of reflectance. Appl. Opt. 1968, 7, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the porous glass prepared by the hydrothermal reaction of sodium borosilicate glass are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, M.; Maruyama, S.; Umesaki, N.; Tanaka, T. Hydroxyl-Group Identification Using O K-Edge XAFS in Porous Glass Fabricated by Hydrothermal Reaction and Low-Temperature Foaming. Molecules 2019, 24, 3488. https://doi.org/10.3390/molecules24193488
Suzuki M, Maruyama S, Umesaki N, Tanaka T. Hydroxyl-Group Identification Using O K-Edge XAFS in Porous Glass Fabricated by Hydrothermal Reaction and Low-Temperature Foaming. Molecules. 2019; 24(19):3488. https://doi.org/10.3390/molecules24193488
Chicago/Turabian StyleSuzuki, Masanori, Shigehiro Maruyama, Norimasa Umesaki, and Toshihiro Tanaka. 2019. "Hydroxyl-Group Identification Using O K-Edge XAFS in Porous Glass Fabricated by Hydrothermal Reaction and Low-Temperature Foaming" Molecules 24, no. 19: 3488. https://doi.org/10.3390/molecules24193488
APA StyleSuzuki, M., Maruyama, S., Umesaki, N., & Tanaka, T. (2019). Hydroxyl-Group Identification Using O K-Edge XAFS in Porous Glass Fabricated by Hydrothermal Reaction and Low-Temperature Foaming. Molecules, 24(19), 3488. https://doi.org/10.3390/molecules24193488