Studies on the Effect of Mass Transfer in Vacuum Impregnation on the Bioactive Potential of Apples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Variation (MV)
2.2. Dry Mass Variation (DMV)
2.3. Solid Gain Changes (SG)
2.3.1. VI with Citric Acid Solution
2.3.2. VI with Apple-Pear Juice
2.3.3. VI with Distilled Water
2.4. Polyphenol Content and Antioxidant Activity
3. Materials and Methods
3.1. Apple Preparation
3.2. Impregnation Liquids
3.3. Vacuum Impregnation
3.4. Mass Transfer Phenomenon
3.5. Chemical Characteristics
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
VI | Vacuum impregnation |
C | Citric acid solution |
DMV | Dry mass variation (-) |
DW | Distilled water |
J | Apple-pear juice |
MV | Mass variation (-) |
SG | Solid gain (g/g i.d.m.) |
M0 | Initial mass of sample (g) |
Mτ | Mass of sample after impregnation (g) |
m0 | Initial dry matter of sample (g) |
mτ | Dry matter of sample after impregnation (g) |
τ | Time of vacuum impregnation phase (s) |
a, b, c, d, f | Parameters of SG model (Equations (1),(5)–(7)) (kg/kg) |
Υ | Mean of experimental value of SG (Equations (5)–(7)) |
MRi,p | Predicted value of SG |
MRi,e | Experimental value of SG |
N | Number of observations |
n | Number of constants in model equation |
Se | Standard deviation of the residual component |
Yt | Arithmetic average of the y variable |
SSM | Sum of squares for the model |
SST | Total sum of squares |
yr | Actual value of the dependent variable (measured) |
yt | Expected value of the dependent variable (based on the regression model) |
yś | Arithmetic average of the actual dependent variable |
RMSE | Root mean square error |
χ2 | Test reduction coefficient |
Ve | Residual variance coefficient |
R2 | Determination coefficient |
Subscripts | |
0 | Initial |
τ | Time (s) |
A, B, C… | Indicate significant differences |
References
- Seguí, L.; Fito, P.J.; Fito, P. Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. J. Food Eng. 2012, 110, 240–247. [Google Scholar] [CrossRef]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Rastogi, N.K.R.; Ksms, K.; Niranjan, D.K. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends Food Sci. Technol. 2002, 13, 48–59. [Google Scholar] [CrossRef]
- Tylewicz, U.; Lundin, P.; Cocola, L.; Dymek, K.; Rocculi, P.; Svanberg, S.; Dejmek, P.; Galindo, F.G. Gas in scattering media absorption spectroscopy (GASMAS) detected persistent vacuum in apple tissue after vacuum impregnation. Food Biophys. 2012, 7, 28–34. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Pereira, L.M.; Vieira, G.S.; Hubinger, M.D. Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. J. Food Eng. 2010, 96, 498–504. [Google Scholar] [CrossRef]
- Junqueira, J.R.D.J.; Corrêa, J.L.G.; Mendonça, K.S.D.; Resende, N.S. Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innov. Food Sci. Emerg. Technol. 2017, 41, 10–18. [Google Scholar] [CrossRef]
- Fito, P. Modelling of vacuum osmotic dehydration of food. J. Food Eng. 1994, 22, 313–328. [Google Scholar] [CrossRef]
- Flores-Andrade, E.; Pascual-Pineda, L.A.; Alarcón-Elvira, F.G.; Rascón-Díaz, M.P.; Pimentel-González, D.J.; Beristain, C.I. Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. J. Food Eng. 2017, 202, 18–24. [Google Scholar] [CrossRef]
- Hironaka, K.; Kikuchi, M.; Koaze, H.; Sato, T.; Kojima, M.; Yamamoto, K.; Yasuda, K.; Mori, M.; Tsuda, S. Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chem. 2011, 127, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xie, J. Practical applications of vacuum impregnation in fruit and vegetable processing. Trends Food Sci. Technol. 2004, 15, 434–451. [Google Scholar] [CrossRef]
- Gras, M.L.; Vidal, D.; Betoret, N.; Chiralt, A.; Fito, P. Calcium fortification of vegetables by vacuum impregnation. Interactions with cellular matrix. J. Food Eng. 2003, 56, 279–284. [Google Scholar] [CrossRef]
- Escriche, I.; Chiralt, A.; Moreno, J.; Serra, J.A. Influence of blanching-osmotic dehydration treatments on volatile fraction of strawberry. J. Food Sci. 2000, 65, 1107–1111. [Google Scholar] [CrossRef]
- Talens, P.; Escriche, I.; Martinez-Navarrete, N.; Chiralt, A. Study of the influence of osmotic dehydration and freezing on the volatile profile of strawberries. J. Food Sci. 2002, 67, 1648–1653. [Google Scholar] [CrossRef]
- Cheng, X.F.; Zhang, M.; Adhikari, B.; Islam, M.N. Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: A combined NMR and DSC study. Food Bioprocess Technol. 2014, 7, 2782–2792. [Google Scholar] [CrossRef]
- de Lima, M.M.; Tribuzi, G.; de Souza, J.A.R.; de Souza, I.G.; Laurindo, J.B.; Carciofi, B.A.M. Vacuum impregnation and drying of calcium-fortified pineapple snakes. LWT-Food Sci. Technol. 2016, 72, 501–509. [Google Scholar] [CrossRef]
- Song, J.; Meng, L.; Li, D.; Qian, M.; Liu, C. Vacuum impregnation pretreatment with maltose syrup to improve the quality of frozen lotus root. Int. J. Refrig. 2017, 76, 261–270. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.V.; Vega-Mercado, H. Osmotic Dehydration. Dehydration of Foods; International Thomson Publishing: Florence, Italy, 1996; pp. 265–288. [Google Scholar]
- Fito, P.; Pastor, R. Non-diffusional mechanism occurring during vacuum osmotic dehydration. J. Food Eng. 1994, 21, 513–519. [Google Scholar] [CrossRef]
- Neri, L.; di Biase, L.; Scchetti, G.; di Mattia, C.; Snatarelli, V.; Mastrocola, D.; Pittia, P. Use of vacuum impregnation for the production of high quality fresh-like apple products. J. Food Eng. 2016, 179, 98–108. [Google Scholar] [CrossRef]
- Carciofi, B.A.M.; Prat, M.; Laurindo, J.B. Dynamic of vacuum impregnation of apples: Experimental data and simulation results using VOF model. J. Food Eng. 2012, 113, 337–343. [Google Scholar] [CrossRef]
- Derossi, A.; De Pilli, T.; Severini, C. Reduction in the pH of vegetables by vacuum impregnation: A study on pepper. J. Food Eng. 2010, 99, 9–15. [Google Scholar] [CrossRef]
- Schulze, B.; Peth, S.; Hubbermann, E.M.; Schwarz, K. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. J. Food Eng. 2012, 109, 380–387. [Google Scholar] [CrossRef]
- Panarese, V.; Dejmek, P.; Rocculi, P.; Gomez Galindo, F. Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innov. Food Sci. Emerg. Technol. 2013, 18, 169–176. [Google Scholar] [CrossRef]
- Guillemin, A.; Degraeve, P.; Noel, C.; Saurel, R. Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith). J. Food Eng. 2008, 86, 475–483. [Google Scholar] [CrossRef]
- Pasławska, M.; Nawirska-Olszańska, A.; Stępień, B.; Klim, A. The Influence of Vacuum Impregnation on Nutritional Properties of Fluidized Bed Dried Kale (Brassica oleracea L. Var. Acephala) Leaves. Molecules 2018, 23, 2764. [Google Scholar] [CrossRef] [PubMed]
- Pasławska, M.; Stępień, B.; Nawirska-Olszańska, A.; Maślankowski, S.; Rydzak, L. Effect of Vacuum Impregnation on Drying Kinetics and Selected Quality Factors of Apple Cubes. Int. J. Food Eng. 2017, 13. [Google Scholar] [CrossRef]
- ASAE. ASAE Standard; ASAE: Washington, WA, USA, 1986; pp. 1–361. [Google Scholar]
- Cichowska, J.; Figiel, A.; Stasiak-Różańska, L.; Witrowa-Rajchert, D. Modeling of Osmotic Dehydration of Apples in Sugar Alcohols and Dihydroxyacetone (DHA) Solutions. Foods 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Olssen, M.E.; Andersson, S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.R. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Food. Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS+ radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Sample Availability: Samples of the impregnated apples are available from the authors. |
Impregnation Liquid | Time (s) | Vacuum Level (kPa) | ||
---|---|---|---|---|
4 | 6 | 8 | ||
C | 0 | 1 | 1 | 1 |
10 | 1.087 ± 0.007 D | 1.153 ± 0.012 E,F | 1.262 ± 0.012 D,E | |
20 | 1.095 ± 0.008 D | 1.162 ± 0.016 F | 1.297 ± 0.012 E | |
30 | 1.099 ± 0.009 D | 1.183 ± 0.019 F | 1.292 ± 0.013 E | |
40 | 1.099 ± 0.010 D | 1.163 ± 0.014 F | 1.294 ± 0.015 E | |
60 | 1.108 ± 0.011 D | 1.176 ± 0.020 F | 1.300 ± 0.014 E | |
80 | 1.122 ± 0.008 D,E | 1.163 ± 0.018 F | 1.300 ± 0.011 E | |
J | 0 | 1 | 1 | 1 |
10 | 1.027 ± 0.005 B | 1.031 ± 0.002 B | 1.041 ± 0.005 B,C | |
20 | 1.016 ± 0.004 A | 1.035 ± 0.004 B | 1.020 ± 0.005 A | |
30 | 1.016 ± 0.005 A | 1.033 ± 0.003 B | 1.034 ± 0.004 B | |
40 | 1.009 ± 0.003 A | 1.042 ± 0.004 B,C | 1.045 ± 0.004 C | |
60 | 1.018 ± 0.004 A | 1.040 ± 0.004 B,C | 1.046 ± 0.005 C | |
80 | - | 1.025 ± 0.004 A,B | - | |
DW | 0 | 1 | 1 | 1 |
10 | 1.104 ± 0.009 D | 1.119 ± 0.015 D | 1.138 ± 0.014 E | |
20 | 1.113 ± 0.011 D | 1.099 ± 0.022 D | 1.094 ± 0.012 D | |
30 | 1.122 ± 0.010 D | 1.062 ± 0.012 C | 1.110 ± 0.011 D | |
40 | 1.102 ± 0.007 D | 1.052 ± 0.010 C | 1.086 ± 0.010 D | |
60 | 1.107 ± 0.009 D | 1.098 ± 0.017 D | 1.078 ± 0.008 C,D | |
80 | 1.087 ± 0.011 D | 1.093 ± 0.013 D | 1.085 ± 0.011 D |
Impregnation Liquid | Time (s) | Vacuum Level (kPa) | ||
---|---|---|---|---|
4 | 6 | 8 | ||
C | 0 | 1 | 1 | 1 |
10 | 0.944 ± 0.020 F | 0.993 ± 0.017 F | 1.005 ± 0.022 F,G | |
20 | 0.930 ± 0.022 F | 0.977 ± 0.021 F | 0.958 ± 0.018 F | |
30 | 0.864 ± 0.019 E | 0.951 ± 0.017 F | 0.903 ± 0.023 E,F | |
40 | 0.818 ± 0.015 D | 0.863 ± 0.025 E | 0.900 ± 0.019 E,F | |
60 | 0.746 ± 0.011 C,D | 0.732 ± 0.011 C,D | 0.885± 0.021 E | |
80 | 0.723 ± 0.008 C | 0.815 ± 0.017 D | 0.786 ± 0.017 D | |
J | 0 | 1 | 1 | 1 |
10 | 1.012 ± 0.019 F,G | 1.081 ± 0.024 G,H | 1.065 ± 0.028 G | |
20 | 1.061 ± 0.019 G | 1.095 ± 0.023 G,H | 1.068 ± 0.033 G | |
30 | 1.074 ± 0.020 G | 1.108 ± 0.019 H | 1.148 ± 0.026 I | |
40 | 1.079 ± 0.015 G | 1.105 ± 0.022 H | 1.158 ± 0.027 I | |
60 | 1.089 ± 0.019 G | 1.152 ± 0.023 I | 1.161 ± 0.025 I | |
80 | - | 1.160 ± 0.029 I | - | |
DW | 0 | 1 | 1 | 1 |
10 | 0.455 ± 0.006 A | 0.581 ± 0.011 B,C | 0.512 ± 0.007 B | |
20 | 0.710 ± 0.011 C | 0.679 ± 0.013 C | 0.555 ± 0.006 B | |
30 | 0.713 ± 0.009 C | 0.679 ± 0.015 C | 0.562 ± 0.008 B | |
40 | 0.716 ± 0.08 C | 0.693 ± 0.016 C | 0.569 ± 0.006 B | |
60 | 0.785 ± 0.020 D | 0.714 ± 0.012 C | 0.715 ± 0.011 C | |
80 | 0.810 ± 0.022 D | 0.764 ± 0.014 C | 0.743 ± 0.009 C,D |
Mathematical Model | Coefficient | Vacuum Level [kPa] | ||
---|---|---|---|---|
4 | 6 | 8 | ||
Peleg | a | −219.1333 | −36.2405 | −12.3447 |
b | 8.4564 | 7.2476 | 6.3128 | |
RSME | 0.6679 | 0.7783 | 0.9904 | |
0.000451 | 0.000551 | 0.000026 | ||
CRV | 38.9 | 38.9 | 23.6 | |
R2 | 0.7786 | 0.8521 | 0.9936 | |
Kevin-Voight | a | −0.0898 | −0.1272 | −0.1412 |
b | 23.0830 | 9.1691 | 9.9627 | |
RSME | 0.0779 | 0.0796 | 0.0998 | |
0.000398 | 0.000508 | 0.000005 | ||
CRV | 5.6 | 12.1 | 8.9 | |
R2 | 0.8049 | 0.8638 | 0.9988 | |
Burger | a | −3.1239 | −0.2255 | −0.1404 |
b | 213.6435 | 20.4573 | 9.8616 | |
c | −0.0113 | −0.0014 | 0.0001 | |
RSME | 0.7944 | 0.7955 | 0.9976 | |
0.000279 | 0.000509 | 0.000007 | ||
CRV | 42.0 | 40.0 | 27.5 | |
R2 | 0.8972 | 0.8977 | 0.9988 |
Mathematical Model | Coefficient | Vacuum Level [kPa] | ||
---|---|---|---|---|
4 | 6 | 8 | ||
Peleg | a | 94.7765 | 88.1274 | 62.4510 |
b | 19.8800 | 6.8219 | 4.4803 | |
RSME | 0.9724 | 0.9293 | 0.9849 | |
0.000003 | 0.000107 | 0.000113 | ||
CRV | 45.7 | 48.2 | 39.1 | |
R2 | 0.9834 | 0.9528 | 0.9910 | |
Kevin-Voight | a | 0.0368 | 0.1237 | 0.1581 |
b | 25.4490 | 15.8917 | 28.9365 | |
RSME | 0.0969 | 0.0879 | 0.0984 | |
0.000004 | 0.000238 | 0.000118 | ||
CRV | 2.4 | 7.0 | 2.6 | |
R2 | 0.9781 | 0.9193 | 0.9903 | |
Burger | a | 0.0157 | 0.0652 | 0.1198 |
b | 9.2438 | 1.2598 | 16.4327 | |
c | 0.0003 | 0.0009 | 0.0003 | |
RSME | 0.9733 | 0.9799 | 0.9766 | |
0.000003 | 0.000005 | 0.000005 | ||
CRV | 26.6 | 43.8 | 28.5 | |
R2 | 0.9893 | 0.9900 | 0.9906 |
Mathematical Model | Coefficient | Vacuum Level [kPa] | ||
---|---|---|---|---|
4 | 6 | 8 | ||
Peleg | a | −1315.1964 | −330.0180 | −110.3170 |
b | −0.4957 | −1.3744 | −3.1288 | |
RSME | 0.0142 | 0.0545 | 0.0473 | |
0.005756 | 0.006651 | 0.001980 | ||
CRV | 60.3 | 69.1 | 38.8 | |
R2 | 0.7664 | 0.6814 | 0.7935 | |
Kevin-Voight | a | −0.9334 | −0.3738 | −0.2266 |
b | 222.4920 | 124.4170 | 26.9840 | |
RSME | 0.0142 | 0.0546 | 0.0453 | |
0.002298 | 0.002340 | 0.002900 | ||
CRV | 60.3 | 68.9 | 35.3 | |
R2 | 0.7664 | 0.6827 | 0.8105 | |
Burger | a | −0.0348 | −0.0209 | −4.2633 |
b | 322.9368 | 217.0000 | 177.4677 | |
c | −0.0006 | −0.0024 | −0.0169 | |
RSME | 0.0159 | 0.0618 | 0.0478 | |
0.009879 | 0.009997 | 0.008988 | ||
CRV | 67.4 | 78.2 | 37.2 | |
R2 | 0.7664 | 0.6736 | 0.8313 | |
Equation 1 | a | 0.0041 | 0.0138 | 0.0169 |
b | −0.0536 | −0.1670 | −0.2169 | |
c | 26.3255 | 24.1722 | 15.0000 | |
d | 5.2663 | 3.3950 | 1.5217 | |
RSME | 0.0071 | 0.0182 | 0.0166 | |
0.00010 | 0.00056 | 0.00013 | ||
CRV | 14.3 | 14.7 | 12.6 | |
R2 | 0.9650 | 0.9788 | 0.9845 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasławska, M.; Stępień, B.; Nawirska-Olszańska, A.; Sala, K. Studies on the Effect of Mass Transfer in Vacuum Impregnation on the Bioactive Potential of Apples. Molecules 2019, 24, 3533. https://doi.org/10.3390/molecules24193533
Pasławska M, Stępień B, Nawirska-Olszańska A, Sala K. Studies on the Effect of Mass Transfer in Vacuum Impregnation on the Bioactive Potential of Apples. Molecules. 2019; 24(19):3533. https://doi.org/10.3390/molecules24193533
Chicago/Turabian StylePasławska, Marta, Bogdan Stępień, Agnieszka Nawirska-Olszańska, and Kinga Sala. 2019. "Studies on the Effect of Mass Transfer in Vacuum Impregnation on the Bioactive Potential of Apples" Molecules 24, no. 19: 3533. https://doi.org/10.3390/molecules24193533
APA StylePasławska, M., Stępień, B., Nawirska-Olszańska, A., & Sala, K. (2019). Studies on the Effect of Mass Transfer in Vacuum Impregnation on the Bioactive Potential of Apples. Molecules, 24(19), 3533. https://doi.org/10.3390/molecules24193533