The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of Coumarin Derivatives 2a–e
2.2. The Effects of pH and Concentration On The Fluorescence of 2a–e
2.3. UV-Vis and Fluorescence Properties of 2a–e in the Presence of Cu2+
2.4. The Coordination of Cu2+ by Coumarin 2b
2.5. The Evaluation of 2b on Soil Samples
3. Materials and Methods
3.1. Materials and Instruments
3.2. General Synthetic Method for the Preparation of 2a–e
3.2.1. Synthesis of 2-oxo-N-(pyridin-2-yl)-2H-chromene-3-carboxamide (2a)
3.2.2. Synthesis of 2-oxo-N-(pyridin-2-ylmethyl)-2H-chromene-3 carboxamide (2b)
3.2.3. Synthesis of 2-oxo-N-(2-(pyridin-2-yl) ethyl)-2H-chromene-3-carboxamide (2c)
3.2.4. Synthesis of N-((1H-benzo[d]imidazol-2-yl) methyl)-2-oxo-2H-chromene-3-carboxamide (2d)
3.2.5. Synthesis of N-(2-aminoethyl)-2-oxo-2H-chromene-3-carboxamide (2e)
3.2.6. Synthesis of 2b-Cu2+ Complex for IR Study
3.2.7. The preparation of a Single Crystal of 2b and 2b–Cu2+ Complex
3.3. Optical Properties of 2a–e
3.3.1. Fluorescence Intensity of 2a–e
3.3.2. pH Dependence of Fluorescence Intensity
3.3.3. The Optical Properties of 2a–e in the Presence of 1 eq. of Cu2+
3.3.4. Fluorescence Spectra of 2b and 2d in the Presence of Cu2+ at Various Concentrations
3.3.5. Interference Studies
3.3.6. Fluorescence Signal Recovery Study
3.3.7. Cu2+ Sensing in Aqueous Soil Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, P.; Zhao, T.; Wang, S.; Hou, X. Semiconductor quantum dots-based metal ion probes. Nanoscale 2014, 6, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Sun, K.; Wu, F.; Gao, B.; Wang, Z.; Kang, M.; Bai, Y.; Zhao, Y.; Liu, X.; Xing, B. Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. Sci. Total. Environ. 2014, 473, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.W.; Wang, F.Y.; Huang, Z.H.; Wang, H. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J. Hazard. Mater. 2010, 176, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Boil. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohmand, J.; Eqani, S.A.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef]
- Giripunje, M.D.; Fulke, A.B.; Meshram, P.U. Remediation Techniques for Heavy-Metals Contamination in Lakes A Mini-Review. Clean-Soil, Air, Water 2015, 43, 1350–1354. [Google Scholar] [CrossRef]
- Kumar, J.; Bhattacharyya, P.K.; Das, D.K. New duel fluorescent “on-off” and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 99–104. [Google Scholar] [CrossRef]
- Lee, H.Y.; Swamy, K.M.K.; Jung, J.Y.; Kim, G.; Yoon, J. Rhodamine hydrazone derivatives based selective fluorescent and colorimetric chemodosimeters for Hg2+ and selective colorimetric chemosensor for Cu2+. Sens. Actuat. B: Chem. 2013, 182, 530–537. [Google Scholar] [CrossRef]
- Robinson, N.J.; Winge, D.R. Copper metallochaperones. Annu. Rev. Biochem. 2010, 79, 537–562. [Google Scholar] [CrossRef]
- World Health Organization: Copper in Drinking Water. Available online: https://www.who.int/water_ sanitation_health/publications/copper/en/ (accessed on 2 October 2019).
- Quang, D.T.; Kim, J.S. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280–6301. [Google Scholar] [CrossRef]
- Váradi, L.; Wang, M.; Mamidi, R.R.; Luo, J.L.; Perry, J.D.; Hibbs, D.E.; Groundwater, P.W. A latent green fluorescent styrylcoumarin probe for the selective growth and detection of Gram negative bacteria. Bioorganic Med. Chem. 2018, 26, 4745–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Q.; Zhu, A.; Shao, X.; Shi, G.; Tian, Y. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Comm. 2012, 48, 5473–5475. [Google Scholar] [CrossRef] [PubMed]
- Uglov, A.N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A.D.; Beletskaya, I.P. Optical methods for the detection of heavy metal ions. Russ. Chem. Rev. 2014, 83, 196–224. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, P.A.; Fedorova, O.A.; Fedorov, Y.V. Fluorescent and colorimetric chemosensors for cations based on 1,8-naphthalimide derivatives: design principles and optical signalling mechanisms. Russ. Chem. Rev. 2014, 83, 155–182. [Google Scholar] [CrossRef]
- A Bren, V. Fluorescent and photochromic chemosensors. Russ. Chem. Rev. 2001, 70, 1017–1036. [Google Scholar] [CrossRef]
- Papadopoulos, J.; Merkens, K.; Muller, T.J.J. Three-Component Synthesis and Photophysical Properties of Novel Coumarin-Based Merocyanines. Chemistry 2018, 24, 974–983. [Google Scholar] [CrossRef]
- Xu, H.X.; Wang, X.Q.; Zhang, C.L.; Wu, Y.P.; Liu, Z.P. Coumarin-hydrazone based high selective fluorescence sensor for copper(II) detection in aqueous solution. Inorg. Chem. Commun. 2013, 34, 8–11. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.; Cen, J.; Li, J.; He, W.; Jiao, Y.; Guo, Z. A reversible ratiometric sensor for intracellular Cu2+ imaging: Metal coordination-altered FRET in a dual fluorophore hybrid. Chem. Comm. 2013, 49, 7632–7634. [Google Scholar] [CrossRef]
- Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 2009, 131, 2008–2012. [Google Scholar] [CrossRef]
- Fors, B.P.; Poelma, J.E.; Menyo, M.S.; Robb, M.J.; Spokoyny, D.M.; Kramer, J.W.; Waite, J.H.; Hawker, C.J. Fabrication of Unique Chemical Patterns and Concentration Gradients with Visible Light. J. Am. Chem. Soc. 2013, 135, 14106–14109. [Google Scholar] [CrossRef] [Green Version]
- Montalbetti, C.A.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827–10852. [Google Scholar] [CrossRef]
- Coskun, A.; Akkaya, E.U. Signal Ratio Amplification via Modulation of Resonance Energy Transfer: Proof of Principle in an Emission Ratiometric Hg(II) Sensor. J. Am. Chem. Soc. 2006, 128, 14474–14475. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Winefordner, J.D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712–724. [Google Scholar]
- National Health and Medical Research Council: Australian Drinking Water Guidelines 2011. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines#block-views-block-file-attachments-content-block-1 (accessed on 2 October 2019).
- Yeh, J.-T.; Chen, W.-C.; Liu, S.-R.; Wu, S.-P. A coumarin-based sensitive and selective fluorescent sensor for copper (II) ions. New J. Chem. 2014, 38, 4434–4439. [Google Scholar] [CrossRef]
- Bailey, P.J.; Lorono-Gonzales, D.; McCormack, C.; Millican, F.; Parsons, S.; Pfeifer, R.; Pinho, P.P.; Rudolphi, F.; Sanchez Perucha, A. Reaction of Azole Heterocycles with Tris (dimethylamino) borane, a New Method for the Construction of Tripodal Borate-Centred Ligands. Chem.–Euro. J. 2006, 12, 5293–5300. [Google Scholar] [CrossRef]
- Ressalan, S.; Iyer, C. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (II), nickel (II) and zinc (II) complexes: A novel fluorescence sensor. J. Lumin. 2005, 111, 121–129. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef]
- Zong, J.; Yang, X.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y.; Li, C.; Muster, T.; Wei, G. Carbon dots as fluorescent probes for “off–on” detection of Cu2+ and l-cysteine in aqueous solution. Biosens. Bioelectron. 2014, 51, 330–335. [Google Scholar] [CrossRef]
- Su, L.; Shu, T.; Wang, Z.; Cheng, J.; Xue, F.; Li, C.; Zhang, X. Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. Biosens. Bioelectron. 2013, 44, 16–20. [Google Scholar] [CrossRef]
- Aswathy, B.; Sony, G. Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchem. J. 2014, 116, 151–156. [Google Scholar] [CrossRef]
- Khatua, S.; Choi, S.H.; Lee, J.; Huh, J.O.; Do, Y.; Churchill, D.G. Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg. Chem. 2009, 48, 1799–1801. [Google Scholar] [CrossRef] [PubMed]
- Weser, U. Copper Coordination Chemistry: Biochemical and Inorganic Perspectives; Karlin, K.D., Zubieta, J., Eds.; Adenine Press: Guilderland, NY, USA, 1983. [Google Scholar]
- Mihaylov, T.; Trendafilova, N.; Kostova, I.; Georgieva, I.; Bauer, G. DFT modeling and spectroscopic study of metal–ligand bonding in La(III) complex of coumarin-3-carboxylic acid. Chem. Phys. 2006, 327, 209–219. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1–S19. [Google Scholar] [CrossRef]
- Li, P.; Lang, M.; Wang, X.; Zhang, T. Sorption and desorption of copper and cadmium in a contaminated soil affected by soil amendments. Clean - Soil, Air, Water 2016, 44, 1547–1556. [Google Scholar] [CrossRef]
- Schwertfeger, D.; Hendershot, W. Ion exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures. Environ. Chem. 2017, 14, 55. [Google Scholar] [CrossRef]
- Rashad, M.; Elnaggar, E.; Assaad, F.F. Readily dispersible clay and its role in the mobility of transition metals Cd2+, Cu2+ and Zn2+ in an alkaline alluvial soil. Environ. Earth Sci. 2014, 71, 3855–3864. [Google Scholar] [CrossRef]
- Minkina, T.M.; Nevidomskaya, D.G.; Shuvaeva, V.A.; Soldatov, A.V.; Tsitsuashvili, V.S.; Zubavichus, Y.V.; Rajput, V.D.; Burachevskaya, M.V. Studying the transformation of Cu2+ ions in soils and mineral phases by the XRD, XANES, and sequential fractionation methods. J. Geochem. Explor. 2018, 184, 365–371. [Google Scholar] [CrossRef]
Probe | 2a | 2b | 2c | 2d | 2e* |
---|---|---|---|---|---|
Yield % | 26 | 23 | 25 | 26 | 30^ |
λabs (nm) | 298 | 300 | 300 | 306 | 300 |
λex (nm) | 280 | 303 | 303 | 325 | 303 |
λem (nm) | 406 | 412 | 412 | 436 | 412 |
Δν (nm) | 126 | 109 | 109 | 111 | 109 |
2b | 2d | 1a* | |
---|---|---|---|
Limit of detection (μM) | 0.14 | 0.38 | 0.5 |
Linear range (μM) | 0–80 | 0–10 | 0–50 |
Interference | Fe3+, Cd2+ | Co2+, Fe3+, Ni+, Hg2+ | No data included |
Association constant (M−1) | 6.85 × 104 | 7.83 × 105 | 1.17 × 105 |
ν(C=O) Coumarin | ν(C=O) Amide | ν(C=N) Pyridine | ν(C=N) Pyridine | ν(N-H) Amide | ν(C-N) Amide | ν(C=C) Pyridine | ν(C=C) Pyridine | |
---|---|---|---|---|---|---|---|---|
2b | 1706 (0.74) | 1648 (0.47) | 1608 (0.47) | 1601 (0.47) | 1564 (0.62) | 1514 (0.85) | 1480 (0.44) | 1451 (0.52) |
+0.5 eq. Cu2+ | 1707 (0.30) | 1653 (0.75) | 1609 (0.59) | 1595 (0.54) | 1566 (0.49) | 1535 (0.36) | 1483 (0.34) | 1451 (0.40) |
+1eq. Cu2+ | 1707 (0.15) | 1653 (0.71) | 1610 (0.69) | 1595 (0.51) | 1567 (0.46) | 1535 (0.57) | 1483 (0.36) | 1451 (0.39) |
In 2b | In 2b-Cu2+ | Single bond length | |
Coumarin C=O | 1.21 | 1.35 | 1.43 |
Sample | Cu2+ Concentration by ICP-MS (μM) | Fluorescence of Solution of 2b at λex = 412 nm (a.u.) | Cu2+ Concentration by Using 2b (μM) | Recovery |
---|---|---|---|---|
1 | 1.23 ± 0.13 | 173.54 ± 0.69 | 1.03 ± 0.13 | 83.7% |
2 | 1.36 ± 0.21 | 175.11 ± 0.36 | 1.27 ± 0.05 | 93.4% |
3 | 1.71 ± 0.27 | 178.48 ± 0.69 | 1.75 ± 0.09 | 102.3% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, B.; Váradi, L.; Trinchi, A.; Reichman, S.M.; Bao, L.; Lan, M.; Wei, G.; Cole, I.S. The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts. Molecules 2019, 24, 3569. https://doi.org/10.3390/molecules24193569
Qian B, Váradi L, Trinchi A, Reichman SM, Bao L, Lan M, Wei G, Cole IS. The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts. Molecules. 2019; 24(19):3569. https://doi.org/10.3390/molecules24193569
Chicago/Turabian StyleQian, Bin, Linda Váradi, Adrian Trinchi, Suzie M. Reichman, Lei Bao, Minbo Lan, Gang Wei, and Ivan S. Cole. 2019. "The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts" Molecules 24, no. 19: 3569. https://doi.org/10.3390/molecules24193569
APA StyleQian, B., Váradi, L., Trinchi, A., Reichman, S. M., Bao, L., Lan, M., Wei, G., & Cole, I. S. (2019). The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts. Molecules, 24(19), 3569. https://doi.org/10.3390/molecules24193569