Applicability of a Monolithic Column for Separation of Isoquinoline Alkalodis from Chelidonium majus Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Concentration of Ammonium Acetate and pH of the Mobile Phase
2.2. Concentration of Acetonitrile
2.3. Effect of Temperature
2.4. Combination of Two and Three Columns
2.5. Analysis of Plant Material
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Chromatographic Experiments
3.3. Plant Material
3.4. Sample Preparation
3.5. Quantitative HPLC Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Connor, S.E. Chapter Nine–Strategies for engineering plant natural products: The iridoid-derived monoterpene indole alkaloids of Catharanthus roseus. Method Enzymol 2012, 515, 189–206. [Google Scholar]
- Roy, A. A review on the alkaloids an important therapeutic compound from plants. Int. J. Plant Biotechnol. 2017, 3, 1–9. [Google Scholar]
- Verporte, R. Defnition and classifcation of alkaloids. Encycl. Sep. Sci. 2000, 1949–1956. [Google Scholar]
- Grycová, L.; Dostál, J.; Marek, R. Quaternary protoberberine alkaloids. Phytochemistry 2007, 68, 150–175. [Google Scholar] [CrossRef] [PubMed]
- Kukuła-Koch, W. The elevation of LC-ESI-Q-TOF-MS response in the analysis of isoquinoline alkaloids from some Papaveraceae and Berberidaceae representatives. J. Anal. Methods Chem. 2017, 2017, 8384107. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.Y.; Meng, F.Y.; Han, J.; Hao, X.Y.; Wang, G.C.; Zhang, Y.L.; Zhang, Q. In vitro activity of plant extracts and alkaloids against clinical isolates of extended-spectrum b-lactamase (ESBL)-producing strains. Molecules 2011, 16, 5453–5459. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, S.; Wójciak-Kosior, M.; Dzągwa-Becker, M.; Gleńsk, M.; Sowa, I.; Fijałkowski, K.; Rurańska-Smutnicka, D.; Matkowski, A.; Junka, A. The activity of isoquinoline alkaloids and extracts from Chelidonium majus against pathogenic bacteria and Candida sp. Toxins 2019, 11, 406. [Google Scholar] [CrossRef]
- Zielińska, S.; Jezierska-Domaradzka, A.; Wójciak-Kosior, M.; Sowa, I.; Junka, A.; Matkowski, A.M. Greater Celandine’s ups and downs—21 centuries of medicinal uses of Chelidonium majus from the viewpoint of today’s pharmacology. Front. Pharmacol. 2018, 9, 299. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Podgórski, R. Influence of different extraction methods on the quantification of selected flavonoids and phenolic acids from Tilia cordata inflorescence. Ind. Crop. Prod. 2015, 76, 509–514. [Google Scholar] [CrossRef]
- Sklenářová, H.; Chocholouš, P.; Koblová, P.; Zahálka, L.; Šatínský, D.; Matysová, L.; Solich, P. High-resolution monolithic columns—a new tool for effective and quick separation. Anal. Bioanal. Chem. 2013, 405, 2255–2263. [Google Scholar] [CrossRef]
- Díaz-Bao, M.; Barreiro, R.; Miranda, J.M.; Cepeda, A.; Regal, P. Recent advances and uses of monolithic columns for the analysis of residues and contaminants in food. Chromatography 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Tanaka, N.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hosoya, K.; Ikegami, T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A 2002, 965, 35–49. [Google Scholar] [CrossRef]
- Maruška, A.; Kornyšova, O. Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. J. Chromatogr. A. 2006, 1112, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Guiochon, G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A. 2007, 1168, 101–168. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, K. Applications of silica-based monolithic HPLC columns. J. Sep. Sci. 2004, 27, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Fast analysis of prominent flavonoids in tomato using a monolithic column and isocratic HPLC. J. Sep. Sci. 2009, 32, 2835–2840. [Google Scholar] [CrossRef]
- Repollés, C.; Herrero-Martínez, J.M.; Ràfols, C. Analysis of prominent flavonoid aglycones by high-performance liquid chromatography using a monolithic type column. J. Chromatogr. A 2006, 1131, 51–57. [Google Scholar] [CrossRef]
- Yadav, A.K.; Manika, N.; Bagchi, G.D.; Gupta, M.M. Simultaneous determination of flavonoids in Oroxylum indicum by RP-HPLC. Med. Chem. Res. 2013, 22, 2222–2227. [Google Scholar] [CrossRef]
- Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M.N.; Rasouli, H.; Talebi, M. Validated high-throughput HPLC method for the analysis of flavonol aglycones myricetin, quercetin, and kaempferol in Rhus coriaria L. using a monolithic column. J. AOAC. Int. 2009, 92, 1035–1043. [Google Scholar]
- Liazid, A.; Barbero, G.F.; Palma, M.; Brigui, J.; Carmelo, G.; Barroso, C.G. Rapid Determination of simple polyphenols in grapes by LC using a monolithic column. Chromatographia 2010, 72, 417–424. [Google Scholar] [CrossRef]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Analysis of phenolic acids in fruits by HPLC with monolithic columns. J. Sep. Sci. 2007, 30, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, N.; Sinha, A.K.; Kumar, N.; Gupta, A.P. Ultrafast UPLC-ESI-MS and HPLC with monolithic column for determination of principal flavor compounds in vanilla pods. J. Sep. Sci. 2009, 32, 3425–3431. [Google Scholar] [CrossRef]
- Singh, D.P.; Govindarajan, R.; Rawat, A.K.S. Comparison of different analytical HPLC columns for determination of furocoumarins in Heracleum candicans fruits. J. Liq. Chromatogr. R T 2008, 31, 421–427. [Google Scholar] [CrossRef]
- Srivastava, A.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Gupta, M.M. Quantitative determination of reserpine, ajmaline and ajmalicine in Rauvolfia serpentina by Reversed Phase High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2006, 44, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Sparzak, B.; Dybowski, F.; Krauze-Baranowska, M. Analysis of Securinega-type alkaloids from Phyllanthus glaucus biomass. Phytochem. Lett. 2015, 11, 353–357. [Google Scholar] [CrossRef]
- Sowa, I.; Zielińska, S.; Sawicki, J.; Bogucka-Kocka, A.; Staniak, M.; Bartusiak-Szcześniak, E.; Podolska-Fajks, E.; Kocjan, R.; Wójciak-Kosior, M. Systematic evaluation of chromatographic parameters for isoquinoline alkaloids on XB-C18 core shell column using different mobile phase compositions. J. Anal. Methods Chem. 2018, 2018, 9624327. [Google Scholar] [CrossRef]
- Zielińska, S.; Wójciak-Kosior, M.; Płachno, B.J.; Sowa, I.; Włodarczyk, M.; Matkowski, A. Quaternary alkaloids in Chelidonium majus in vitro cultures. Ind. Crop. Prod. 2018, 123, 17–24. [Google Scholar] [CrossRef]
- Petruczynik, A.; Gadzikowska, M.; Waksmundzka-Hajnos, M. Optimization of the separation of some Chelidonium maius L. alkaloids by reversed phase high-performance liquid chromatography using cyanopropyl bonded stationary phase. Acta Pol. Pharm. 2002, 59, 61–64. [Google Scholar]
- Petruczynik, A.; Waksmundzka-Hajnos, M. High performance liquid chromatography of selected alkaloids in ion-exchange systems. J. Chromatogr. A 2013, 1311, 48–54. [Google Scholar] [CrossRef]
- Kursinszki, L.; Sárközi, Á.; Kéry, Á.; Szöke, É. Improved RP-HPLC method for analysis of isoquinoline alkaloids in extracts of Chelidonium majus. Chromatographia 2006, 63, 131–135. [Google Scholar] [CrossRef]
- Petruczynik, A.; Tuzimski, T.; Plech, T.; Misiurek, J.; Szalast, K.; Szymczak, G. Comparison of anticancer activity and HPLC-DAD determination of selected isoquinoline alkaloids from Thalictrum foetidum, Berberis sp. and Chelidonium majus extracts. Molecules 2019, 24, 3417. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Ferreres, F.; Gil-Izquierdo, A.; Valentão, P.; Sampaio, M.; Lima, J.; Andrade, P.B. Box–Behnken factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L. Talanta 2014, 130, 128–136. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the alkaloid compounds are available from the authors. |
One Column | Two Columns | Three Columns | |||||||
---|---|---|---|---|---|---|---|---|---|
tR | N | RS | tR | N | RS | tR | N | RS | |
Protopine | 4.91 | 2695 | 2.05 | 9.893 | 3547 | 2.84 | 15.047 | 5650 | 3.50 |
Allocryptopine | 5.75 | 2471 | 1.32 | 11.6 | 3821 | 1.43 | 18.04 | 6339 | 1.57 |
Chelidonine | 6.34 | 3105 | 0.62 | 12.76 | 3582 | 0.81 | 19.5 | 5893 | 0.97 |
Coptisine | 6.67 | 1933 | 5.05 | 13.347 | 2250 | 5.87 | 20.607 | 3777 | 6.16 |
Sanguinarine | 10.4 | 2001 | 0.88 | 20.807 | 2114 | 1.31 | 32.36 | 2693 | 1.51 |
Berberine | 11.2 | 1765 | 6.21 | 23,14 | 2979 | 7.65 | 35.847 | 4437 | 8.17 |
Chelerythrine | 19.2 | 2418 | 38.687 | 2643 | 60.42 | 3726 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniak, M.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Dresler, S.; Tyszczuk-Rotko, K. Applicability of a Monolithic Column for Separation of Isoquinoline Alkalodis from Chelidonium majus Extract. Molecules 2019, 24, 3612. https://doi.org/10.3390/molecules24193612
Staniak M, Wójciak-Kosior M, Sowa I, Strzemski M, Sawicki J, Dresler S, Tyszczuk-Rotko K. Applicability of a Monolithic Column for Separation of Isoquinoline Alkalodis from Chelidonium majus Extract. Molecules. 2019; 24(19):3612. https://doi.org/10.3390/molecules24193612
Chicago/Turabian StyleStaniak, Michał, Magdalena Wójciak-Kosior, Ireneusz Sowa, Maciej Strzemski, Jan Sawicki, Sławomir Dresler, and Katarzyna Tyszczuk-Rotko. 2019. "Applicability of a Monolithic Column for Separation of Isoquinoline Alkalodis from Chelidonium majus Extract" Molecules 24, no. 19: 3612. https://doi.org/10.3390/molecules24193612
APA StyleStaniak, M., Wójciak-Kosior, M., Sowa, I., Strzemski, M., Sawicki, J., Dresler, S., & Tyszczuk-Rotko, K. (2019). Applicability of a Monolithic Column for Separation of Isoquinoline Alkalodis from Chelidonium majus Extract. Molecules, 24(19), 3612. https://doi.org/10.3390/molecules24193612