Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species
Abstract
:1. Introduction
2. Results
2.1. Anacamptis Coriophora subsp. Fragrans
2.2. Anacamptis Pyramidalis
2.3. Ophrys Holosericea
2.4. Serapias Vomeracea
2.5. Venn’s Diagram
2.6. DPPH Assay
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation of Volatile Fraction
4.3. Fractionation and Alkylthiolation of Alkenes
4.4. GC/FID Analysis
4.5. GC/MS Analysis
4.6. Identification and Quantification of the Essential Oil Components
4.7. DPPH Assay
4.8. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Dudareva, N. Biochemical and Molecular Genetic Aspects of Floral Scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Dobson, H.E.M. Floral volatiles in insect biology. In Insect–Plant Interactions; Bernays, E., Ed.; CRC: Boca Raton, FL, USA, 1994; Volume 5, pp. 47–81. [Google Scholar]
- Raguso, R.A. Floral Scent, Olfaction, and Scent-Driven Foraging Behavior, in Cognitive Ecology of Pollination; Chittka, L., Thomson, J.D., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 83. [Google Scholar]
- Dodson, C.H.; Dressler, R.L.; Hills, H.G.; Adams, R.M.; Williams, N.H. Biologically Active Compounds in Orchid Fragrances. Science 1969, 164, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Dobson, H.E.M.; Danielson, E.M.; Van Wesep, I.D. Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant. Spec. Biol. 1999, 14, 153–166. [Google Scholar] [CrossRef]
- Menzel, R. Learning in honey bees in an ecological and behavioral context. In Experimental Behavioral Ecology; Hölldobler, B., Lindauer, M., Eds.; Fischer: Stuttgart, Germany, 1985; pp. 55–74. [Google Scholar]
- Waser, N.M. Flower Constancy: Definition, Cause, and Measurement. Am. Nat. 1986, 127, 593–603. [Google Scholar] [CrossRef]
- Pellmyr, O. Three pollination morphs in Cimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia 1986, 68, 304–307. [Google Scholar] [CrossRef]
- Grant, V. Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. USA 1994, 91, 3–10. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Mandreil, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria mono-cytogenes, and Salmonella enterica. J. Food Protect. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef]
- Huber, F.K.; Kaiser, R.; Sauter, W.; Schiestl, F.P. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 2005, 142, 564–575. [Google Scholar] [CrossRef]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201. [Google Scholar] [CrossRef]
- Kaiser, R. The Scent of Orchids: Olfactory and Chemical Investigations; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Salzmann, C.C.; Nardella, A.M.; Cozzolino, S.; Schiestl, F.P. Variability in floral scent in rewarding and deceptive orchids: The signature of pollinator-imposed selection? Ann. Bot. 2007, 100, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P.; Peakall, R.; Ibarra, F.; Francke, W.; Mant, J.G.; Schulz, C.; Franke, S. The Chemistry of Sexual Deception in an Orchid-Wasp Pollination System. Science 2003, 302, 437–438. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, A.M.; Cribb, P.J.; Chase, M.W.; Rasmussen, F. Genera Orchidacearum, Vol. II: Orchidoideae (Part I); OUP: Oxford, UK, 2001. [Google Scholar]
- Pellegrino, G.; Bellusci, F.; Musacchio, A. Double floral mimicry and the magnet species effect in dimorphic co-flowering species, the deceptive orchid Dactylorhiza sambucina and rewarding Viola aethnensis. Preslia 2008, 80, 411–422. [Google Scholar]
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E.; et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Cozzolino, S.; Schiestl, F.P.; Müller, A.; De Castro, O.; Nardella, A.M.; Widmer, A. Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: Absence of premating barriers? Proc. R. Soc. B Boil. Sci. 2005, 272, 1271–1278. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Orchid pollination by sexual swindle. Nature 1999, 399, 421. [Google Scholar] [CrossRef]
- Dafni, A.; Ivri, Y.; Brantjes, N.B.M. Pollination of Serapias vomeracea Briq. (Orch.) by imitation of holes for sleeping solitary male bees (Hym.). Acta Bot. Neerl. 1981, 30, 69–73. [Google Scholar] [CrossRef]
- van der Cingel, N.A. An Atlas of Orchid Pollination: European Orchids; A.A. Balkema Publishers: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Pellegrino, G.; Luca, A.; Bellusci, F.; Musacchio, A. Comparative analysis of floral scents in four sympatric species of Serapias L. (Orchidaceae): Clues on their pollination strategies. Plant Syst. Evol. 2012, 298, 1837–1843. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Oliveros, J.C. (2007–2015) Venn’sy. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: http://bioinfogp.cnb.csic.es/tools/Venn’sy/index.html (accessed on 19 June 2019).
- Manzo, A.; Panseri, S.; Vagge, I.; Giorgi, A. Volatile Fingerprint of Italian Populations of Orchids Using Solid Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry. Molecules 2014, 19, 7913–7936. [Google Scholar] [CrossRef] [Green Version]
- Robustelli della Cuna, F.S.; Boselli, C.; Papetti, A.; Mannucci, B.; Calevo, J.; Tava, A. Composition of Volatile Fraction from Inflorescences and Leaves of Dendrobium moschatum (Orchidaceae). Nat. Prod. Commun. 2018, 13, 93–96. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A 2000, 186, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Mant, J.; Brändli, C.; Vereecken, N.J.; Schulz, C.M.; Francke, W.; Schiestl, F.P. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J. Chem. Ecol. 2005, 31, 1765–1787. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D.; Espelie, K.E. Effects of Plant Epicuticular Lipids on Insect Herbivores. Annu. Rev. Entomol. 1995, 40, 171–194. [Google Scholar] [CrossRef]
- Mohd-Hairul, A.R.; Namasivayam, P.; Lian, G.E.C.; Abdullah, J.O. Terpenoid, Benzenoid, and Phenylpropanoid Compounds in the Floral Scent of Vanda Mimi Palmer. J. Plant Boil. 2010, 53, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Steiner, K.E.; Kaiser, R.; Dötterl, S. Strong phylogenetic effects on floral scent variation of oil-secreting orchids in South Africa. Am. J. Bot. 2011, 98, 1663–1679. [Google Scholar] [CrossRef]
- Lind, H.; Lindeborg, M. Lepidopterans as presumptive pollinators of Anacamptis pyramidalis. Entomol. Tidskr. 1989, 110, 156–160. [Google Scholar]
- Lind, H. Occurrence, population and fruit setting in Anacamptis pyramidalis on OÖland, Sweden. Sven. Bot. Tidskr. 1992, 86, 329–336. [Google Scholar]
- Lind, H. Lepidoptera—Important Long-Distance Pollinators for Plants in Fragmented Habitats. Sven. Bot. Tidskr. 1994, 88, 185–187. [Google Scholar]
- Proctor, M.; Yeo, P.; Lack, A. The Natural History of Pollination, 1st ed.; HarperCollins: London, UK, 1996. [Google Scholar]
- Tava, A.; Cecotti, R.; Confalonieri, M. Characterization of the volatile fraction of Nigritella nigra (L.) Rchb. F. (Orchidaceae), a rare species from the Central Alps. J. Essent. Oil Res. 2012, 24, 39–44. [Google Scholar] [CrossRef]
- Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant activity of free volatile aglycones from Laurel (Laurus nobilis L.) compared to its essential oil. Croat. Chem. Acta 2007, 80, 121–126. [Google Scholar]
- Zhao, J.; Jiang, L.; Tang, X.; Peng, L.; Li, X.; Zhao, G.; Zhong, L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018, 23, 182. [Google Scholar] [CrossRef] [PubMed]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Andrade, M.A.; das Graças Cardoso, M.; de Andrade, J.; Silva, L.F.; Teixeira, M.L.; Valério Resende, J.M.; da Silva Figueiredo, A.C.; Barroso, J.G. Chemical composition and antioxidant activity of essential oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, L.A.; Groth, I.; Bergström, G. Floral scents in butterfly-pollinated plants: Possible convergence in chemical composition. Bot. J. Linn. Soc. 2002, 140, 129–153. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Cozzolino, S. Evolution of sexual mimicry in the orchid subtribe orchidinae: The role of preadaptations in the attraction of male bees as pollinators. BMC Evol. Boil. 2008, 8, 27. [Google Scholar] [CrossRef]
- G.I.R.O.S. Gruppo Italiano Ricerca Orchidee Spontanee. Available online: http://www.giros.it/forum/viewtopic.php?f=7&t=1498 (accessed on 9 January 2019).
- El Mokni, R.; Hammami, S.; Dall’Acqua, S.; Peron, G.; Faidi, K.; Braude, J.P.; Sebei, H.; El Aouni, M.H. Chemical composition, antioxidant and cytotoxic activities of essential oil of the inflorescence of Anacamptis coriophora subsp. fragrans (Orchidaceae) from Tunisia. Nat. Prod. Commun. 2016, 11, 857–860. [Google Scholar] [CrossRef]
- Dormont, L.; Delle-Vedove, R.; Bessiere, J.-M.; Schatz, B. Floral scent emitted by white and coloured morphs in orchids. Phytochemistry 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; Berg, C.V.D.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.A.; Roan, C.S.; Yost, R.A.; Hector, J. Dimethyl disulphide derivatives of long chain alkenes, alkadienes and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 1989, 61, 1564–1571. [Google Scholar] [CrossRef]
- Dool, H.V.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Bari, E.; Arciola, C.R.; Vigani, B.; Crivelli, B.; Moro, P.; Marrubini, G.; Sorrenti, M.; Catenacci, L.; Bruni, G.; Chlapanidas, T.; et al. In Vitro Effectiveness of Microspheres Based on Silk Sericin and Chlorella vulgaris or Arthrospira platensis for Wound Healing Applications. Materials 2017, 10, 983. [Google Scholar] [CrossRef] [PubMed]
- Bari, E.; Perteghella, S.; Marrubini, G.; Sorrenti, M.; Catenacci, L.; Tripodo, G.; Mastrogiacomo, M.; Mandracchia, D.; Trapani, A.; Faragò, S.; et al. In vitro efficacy of silk sericin microparticles and platelet lysate for intervertebral disk regeneration. Int. J. Boil. Macromol. 2018, 118, 792–799. [Google Scholar] [CrossRef]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.A.; Tosca, M.C.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Boil. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Percentage Peak Area | ||||||
---|---|---|---|---|---|---|
Compound | RI a | RI b | A. coriophora subsp. Fragrans | A. pyramidalis | O. holosericea | S. vomeracea |
Hexanal | 801 | 799 | tr | 0.30 | tr | 0.21 |
2,4-Dimethyl heptane | 820 | 819 | - | 0.13 | 0.21 | 0.19 |
2-Methyl-2-pentenal | 821 | 829 | - | 0.16 | 0.30 | 0.24 |
Diacetone alcohol | 841 | 844 | - | 0.24 | 0.37 | 1.03 |
Heptanal | 901 | 901 | 0.17 | 4.02 | 1.39 | 1.57 |
Benzaldehyde | 961 | 957 | 0.10 | 0.59 | 0.18 | 0.13 |
Heptanol | 972 | 971 | tr | tr | 0.10 | tr |
Nonane | 1000 | 999 | 0.45 | - | 0.08 | 0.06 |
Octanal | 1001 | 1003 | - | - | 0.07 | 0.22 |
Benzyl alcohol | 1032 | 1033 | tr | 1.13 | 2.59 | tr |
Phenylacetaldehyde | 1042 | 1042 | 0.70 | 3.82 | 2.07 | 3.91 |
2,4-Dimethyldecane | 1067 | 1068 | 0.56 | 0.55 | 1.24 | 0.57 |
3,5-Octadien-2-one | 1072 | 1071 | - | - | 0.08 | - |
Heptanoic acid | 1083 | 1083 | 0.14 | 1.41 | - | 0.37 |
Undecane | 1100 | 1100 | - | 0.31 | - | 0.18 |
Nonanal | 1102 | 1104 | 1.61 | 5.44 | 4.65 | 7.87 |
2-Phenylethanol | 1107 | 1112 | - | 12.11 | tr | tr |
p-Cresol | 1158 | 1158 | 0.87 | - | - | - |
Octanoic acid | 1173 | 1173 | - | - | - | 0.07 |
1-Dodecene | 1192 | 1192 | - | - | - | 0.19 |
Dodecane | 1200 | 1200 | 0.47 | 0.42 | 0.45 | 0.26 |
Decanal | 1204 | 1206 | - | 0.17 | 0.15 | 0.49 |
Anisaldehyde | 1251 | 1253 | 0.68 | - | - | - |
Nonanoic acid | 1275 | 1272 | 0.16 | 1.16 | tr | 0.71 |
Thymol | 1277 | 1281 | 0.36 | 0.30 | 0.66 | 0.28 |
Undecanal | 1307 | 1307 | - | tr | 0.36 | 1.35 |
2,5-Dimethoxy benzyl alcohol | 1328 | 1327 | 0.19 | - | 0.14 | - |
α-Copaene | 1376 | 1376 | 0.26 | 0.45 | 0.56 | tr |
1-Tetradecene | 1390 | 1392 | - | tr | - | 0.39 |
Tetradecane | 1400 | 1400 | 0.45 | 0.54 | 0.50 | 1.68 |
Dodecanal | 1412 | 1409 | - | 0.05 | 0.26 | 0.38 |
trans-Caryophyllene | 1418 | 1421 | - | 0.09 | 0.04 | - |
trans-β-Farnesene | 1452 | 1458 | - | - | - | 0.84 |
γ-Muurolene | 1471 | 1468 | 0.08 | 0.05 | 0.48 | 0.39 |
Pentadecane | 1500 | 1500 | 0.15 | 0.19 | 0.12 | 0.36 |
α-Cadinene | 1537 | 1538 | 0.16 | 0.14 | - | 0.09 |
1-Hexadecene | 1591 | 1592 | 1.21 | - | - | 0.51 |
Hexadecane | 1600 | 1600 | 0.19 | 0.14 | 0.19 | 0.15 |
Tetradecanal | 1613 | 1613 | - | 0.09 | 0.31 | 0.60 |
γ-Eudesmol | 1627 | 1635 | 0.12 | - | - | - |
Methyl-p-methoxycinnamate | 1617 | 1614 | 0.58 | - | - | - |
Heptadecane | 1700 | 1700 | 0.24 | 0.24 | 0.45 | 0.65 |
Pentadecanal | 1713 | 1713 | - | 0.11 | - | 0.28 |
1-Heptadecene | 1755 | 1748 | 0.06 | - | - | 0.40 |
Octadecane | 1800 | 1800 | - | - | - | 0.08 |
Nonadecane | 1900 | 1900 | 20.51 | 2.26 | 0.56 | 2.45 |
Isophytol | 1944 | 1949 | - | 1.47 | tr | 0.84 |
Palmitic acid | 1950 | 1960 | - | - | - | 0.77 |
Eicosane | 2000 | 1999 | 1.56 | 0.14 | - | 0.17 |
Octadecanal | 2021 | 2020 | 0.19 | 1.44 | 1.00 | 0.93 |
9-Heneicosene | 2071 | 2073 | - | - | - | 0.71 |
Heneicosane | 2100 | 2100 | 25.10 | 7.50 | 4.34 | 5.68 |
Docosane | 2200 | 2199 | 0.96 | - | 1.01 | 0.80 |
11-Tricosene | 2261 | 2265 | 0.17 | - | 0.15 | 0.65 |
9-Tricosene | 2279 | 2274 | 1.42 | - | 3.19 | 1.19 |
7-Tricosene | 2287 | 2280 | - | - | 2.72 | 1.18 |
Tricosane | 2300 | 2300 | 17.16 | 17.17 | 27.71 | 14.21 |
Tetracosane | 2400 | 2400 | 0.76 | - | 1.58 | 1.90 |
11-Pentacosene | 2469 | 2469 | - | - | 1.77 | - |
9-Pentacosene | 2474 | 2474 | 3.39 | 4.69 | 2.95 | 3.92 |
7-Pentacosene | 2483 | 2482 | - | tr | 16.60 | 2.48 |
Pentacosane | 2500 | 2500 | 9.31 | 16.24 | 6.84 | 17.59 |
Hexacosane | 2600 | 2600 | 0.27 | 0.47 | - | 0.85 |
9-Heptacosene | 2676 | 2675 | 2.30 | 3.90 | 2.17 | 2.87 |
7-Heptacosene | 2683 | 2681 | 0.34 | 1.38 | 2.36 | 3.71 |
Heptacosane | 2700 | 2699 | 3.43 | 6.04 | 2.22 | 4.99 |
9-Nonacosene | 2876 | 2874 | 0.31 | 0.37 | 0.13 | 0.43 |
Nonacosane | 2900 | 2902 | - | 0.09 | 0.37 | 0.47 |
Saturated hydrocarbons | 81.57 | 52.43 | 47.87 | 53.29 | ||
Unsaturated hydrocarbons | 9.20 | 10.34 | 32.04 | 18.63 | ||
Aldehydes | 3.45 | 16.19 | 10.74 | 18.18 | ||
Alcohols | 0.19 | 13.48 | 3.20 | 1.03 | ||
Terpenes | 0.98 | 2.50 | 1.74 | 2.44 | ||
Acids | 0.30 | 2.57 | tr | 1.92 | ||
Miscellaneous | 1.45 | - | 0.08 | - |
Species | Lepidotpera | Diptera | Hymenoptera | Coleoptera |
---|---|---|---|---|
Anacamptis coriophora subsp. Fragans | Nymphalidae Zygaenidae | Tachinidae Bombyliidae | Apidae Halictidae Vespidae | Oedemeridae |
Anacamptis pyramidal | Arctiidae Crambidae Hesperidae Lycaenidae Nymphalidae Noctuidae | Bombyliidae Conopidae Empididae | Apidae | Oedemeridae |
Ophrys holosericea | - | - | Apidae Formicidae | Rutelidae |
Serapias vomeracea | - | - | Apidae Crabronidae Eumenidae Halictidae Megachilidae | Scarabaeidae |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robustelli della Cuna, F.S.; Calevo, J.; Bari, E.; Giovannini, A.; Boselli, C.; Tava, A. Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species. Molecules 2019, 24, 3878. https://doi.org/10.3390/molecules24213878
Robustelli della Cuna FS, Calevo J, Bari E, Giovannini A, Boselli C, Tava A. Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species. Molecules. 2019; 24(21):3878. https://doi.org/10.3390/molecules24213878
Chicago/Turabian StyleRobustelli della Cuna, Francesco Saverio, Jacopo Calevo, Elia Bari, Annalisa Giovannini, Cinzia Boselli, and Aldo Tava. 2019. "Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species" Molecules 24, no. 21: 3878. https://doi.org/10.3390/molecules24213878
APA StyleRobustelli della Cuna, F. S., Calevo, J., Bari, E., Giovannini, A., Boselli, C., & Tava, A. (2019). Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species. Molecules, 24(21), 3878. https://doi.org/10.3390/molecules24213878