Dialkylation of Indoles with Trichloroacetimidates to Access 3,3-Disubstituted Indolenines
Abstract
:1. Introduction
2. Results & Discussion
3. Materials and Methods
3.1. General Experimental Information
3.2. Preparation of Trichloroacetimidates
3.3. Synthesis of 3,3′-Disubstituted Indolenines
3.4. Elaboration of the 3,3′-Disubstituted Indolenines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, Y.; Fatima, K.; Atta‒ur, R.; Occolowitz, J.L.; Solheim, B.A.; Clardy, J.; Garnick, R.L.; Le Quesne, P.W. Structure and Absolute Configuration of Strictamine and Strictalamine from Rhazya Stricta. Stereochemistry of the Picralima Alkaloids. J. Am. Chem. Soc. 1977, 99, 1943–1946. [Google Scholar] [CrossRef]
- Kump, W.G.; Patel, M.B.; Rowson, J.M.; Schmid, H. Pleiocarpa alkaloids. VII. Indole Alkaloids of Pleiocarpa Pycnantha var. Tubicina Leaves. Helv. Chim. Acta. 1964, 47, 1497–1503. [Google Scholar] [CrossRef]
- Fritz, H.; Fischer, O. Indole Alkaloids. III. Tetracyclic α-Aminoindolines. New Class of Compounds with Ring-Chain Tautomerism, Including Synthesis of a Modified C-Curarine III. Tetrahedron 1964, 20, 1737–1753. [Google Scholar]
- Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.-S. Biologically Active Aspidofractinine, Rhazinilam, Akuammiline, and Vincorine Alkaloids from Kopsia. J. Nat. Prod. 2007, 70, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Verbitski, S.M.; Mayne, C.L.; Davis, R.A.; Concepcion, G.P.; Ireland, C.M. Isolation, Structure Determination, and Biological Activity of a Novel Alkaloid, Perophoramidine, from the Philippine Ascidian Perophora namei. J. Org. Chem. 2002, 67, 7124–7126. [Google Scholar] [CrossRef]
- Dhankher, P.; Benhamou, L.; Sheppard, T.D. Rapid Assembly of Functionalised Spirocyclic Indolines by Palladium-Catalysed Dearomatising Diallylation of Indoles with Allyl Acetate. Chem. Eur. J. 2014, 20, 13375–13381. [Google Scholar] [CrossRef]
- Liddon, J.T.R.; Rossi-Ashton, J.A.; Taylor, R.J.K.; Unsworth, W.P. Dearomatizing Spiroannulation Reagents: Direct Access to Spirocycles from Indoles and Dihalides. Org. Lett. 2018, 20, 3349–3353. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. Med. Chem. Comm. 2013, 4, 515–519. [Google Scholar] [CrossRef]
- Karawajczyk, A.; Giordanetto, F.; Benningshof, J.; Hamza, D.; Kalliokoski, T.; Pouwer, K.; Morgentin, R.; Nelson, A.; Mueller, G.; Piechot, A.; et al. Expansion of chemical space for collaborative lead generation and drug discovery: The European Lead Factory Perspective. Drug Discov. Today 2015, 20, 1310–1316. [Google Scholar] [CrossRef]
- Mueller, G.; Berkenbosch, T.; Benningshof, J.C.J.; Stumpfe, D.; Bajorath, J. Charting Biologically Relevant Spirocyclic Compound Space. Chem. Eur. J. 2017, 23, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Bondensgaard, K.; Ankersen, M.; Thogersen, H.; Hansen, B.S.; Wulff, B.S.; Bywater, R.P. Recognition of Privileged Structures by G-Protein Coupled Receptors. J. Med. Chem. 2004, 47, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Patchett, A.A. 2002 Alfred Burger Award Address in Medicinal Chemistry. Natural Products and Design: Interrelated Approaches in Drug Discovery. J. Med. Chem. 2002, 45, 5609–5616. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.S.; Huang, C.Q.; Fang, Y.Y.; Zhu, Y.F. A Convenient Synthesis of 1’-H-Spiro-(Indoline-3,4’-Piperidine) and its Derivatives. Tetrahedron 2004, 60, 4875–4878. [Google Scholar] [CrossRef]
- Patchett, A.A.; Nargund, R.P.; Tata, J.R.; Chen, M.H.; Barakat, K.J.; Johnston, D.B.R.; Cheng, K.; Chan, W.W.S.; Butler, B.; Hickey, G.; et al. Design and Biological Activities of L-163,191 (MK-0677): A Potent, Orally Active Growth Hormone Secretagogue. Proc. Natl. Acad. Sci. USA 1995, 92, 7001–7005. [Google Scholar] [CrossRef] [PubMed]
- Panknin, O.; Baeurle, S.; Ring, S.; Schwede, W.; Schmees, N.; Nowak-Reppel, K.; Langer, G. Spiro[indolin-3,4’-piperidine] Derivatives as GnRH Receptor Antagonists and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Sex-Hormone-Related Diseases. Germany Patent WO2015091315A1, 25 June 2015. [Google Scholar]
- Kauffman, G.S.; Li, C.; Lippa, B.S.; Morris, J.; Pan, G. Preparation of Bicyclic Heteroaromatic Derivatives as Anticancer Agents. US Patent WO2006090261A1, 15 February 2006. [Google Scholar]
- Qiao, J.X.; Wang, T.C.; Ruel, R.; Thibeault, C.; Lheureux, A.; Schumacher, W.A.; Spronk, S.A.; Hiebert, S.; Bouthillier, G.; Lloyd, J.; et al. Conformationally Constrained ortho-Anilino Diaryl Ureas: Discovery of 1 (2-(1’-Neopentylspiro[indoline-3,4’-Piperidine]-1-yl)Phenyl)-3-(4-(Trifluoromethoxy)Phenyl)urea, a Potent, Selective, and Bioavailable P2Y1 Antagonist. J. Med. Chem. 2013, 56, 9275–9295. [Google Scholar] [CrossRef] [PubMed]
- Bricks, J.L.; Kachkovskii, A.D.; Slominskii, Y.L.; Gerasov, A.O.; Popov, S.V. Molecular Design of Near Infrared Polymethine Dyes: A Review. Dyes Pigm. 2015, 121, 238–255. [Google Scholar] [CrossRef]
- Schnermann, M.J. Chemical Biology Organic Dyes for Deep Bioimaging. Nature 2017, 551, 176–177. [Google Scholar] [CrossRef]
- Hyun, H.; Park, M.H.; Owens, E.A.; Wada, H.; Henary, M.; Handgraaf, H.J.M.; Vahrmeijer, A.L.; Frangioni, J.V.; Choi, H.S. Structure-Inherent Targeting of Near-Infrared Fluorophores for Parathyroid and Thyroid Gland Imaging. Nat. Med. 2015, 21, 192–197. [Google Scholar] [CrossRef]
- Cooper, M.E.; Gregory, S.; Adie, E.; Kalinka, S. pH-Sensitive Cyanine Dyes for Biological Applications. J. Fluoresc. 2002, 12, 425–429. [Google Scholar] [CrossRef]
- Njiojob, C.N.; Owens, E.A.; Narayana, L.; Hyun, H.; Choi, H.S.; Henary, M. Tailored Near-Infrared Contrast Agents for Image Guided Surgery. J. Med. Chem. 2015, 58, 2845–2854. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Chen, Q.; Yang, Y.; Tang, Y.; Wang, R.; Xu, Y.; Zhu, W.; Qian, X. FRET-Based Mito-Specific Fluorescent Probe for Ratiometric Detection and Imaging of Endogenous Peroxynitrite: Dyad of Cy3 and Cy5. J. Am. Chem. Soc. 2016, 138, 10778–10781. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Recent Development of Chemosensors Based on Cyanine Platforms. Chem. Rev. 2016, 116, 7768–7817. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Hua, J.; Wu, W.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H. A High-Efficiency Cyanine Dye for Dye-Sensitized Solar Cells. Tetrahedron 2008, 64, 345–350. [Google Scholar] [CrossRef]
- Matsui, M.; Haishima, Y.; Kubota, Y.; Funabiki, K.; Jin, J.; Kim, T.H.; Manseki, K. Application of Benz[c,d]indolenine-Based Unsymmetrical Squaraine Dyes to Near-Infrared Dye-Sensitized Solar Cells. Dyes Pigm. 2017, 141, 457–462. [Google Scholar] [CrossRef]
- Ball-Jones, N.R.; Badillo, J.J.; Franz, A.K. Strategies for the Enantioselective Synthesis of Spirooxindoles. Org. Biomol. Chem. 2012, 10, 5165–5181. [Google Scholar] [CrossRef]
- Wang, J.; Bai, X.; Xu, C.; Wang, Y.; Lin, W.; Zou, Y.; Shi, D. Ultrasound-Promoted One-Pot, Three-Component Synthesis of Spiro[indoline-3,1’-Pyrazolo[1,2-b]Phthalazine] Derivatives. Molecules 2012, 17, 8674–8686. [Google Scholar] [CrossRef]
- Chen, C.; Lv, C.; Liang, J.; Jin, J.; Wang, L.; Wu, C.; Shen, R. An Efficient Synthesis of Spiro[indoline-3,9’-Xanthene]trione Derivatives Catalyzed by Magnesium Perchlorate. Molecules 2017, 22, 1295. [Google Scholar] [CrossRef]
- Anis’kov, A.; Klochkova, I.; Tumskiy, R.; Yegorova, A. A Diastereoselective synthesis of Dispiro[oxindole-Cyclohexanone]pyrrolidines by 1,3-Dipolar Cycloaddition. Molecules 2017, 22, 2134. [Google Scholar] [CrossRef]
- Overman, L.E.; Angle, S.R. Synthesis Applications of Cationic Aza-Cope Rearrangements. Stereocontrolled Synthesis of Hexahydro-1H-pyrrolo[2,3-d]carbazoles. J. Org. Chem. 1985, 50, 4021–4028. [Google Scholar] [CrossRef]
- Overman, L.E.; Robertson, G.M.; Robichaud, A.J. Use of Aza-Cope Rearrangement-Mannich Cyclization Reactions to Achieve a General Entry to Melodinus and Aspidosperma Alkaloids. Stereocontrolled Total Syntheses of (±)-Deoxoapodine, (±)-Meloscine, and (±)-Epimeloscine and a Formal Synthesis of (±)-1-Acetylaspidoalbidine. J. Am. Chem. Soc. 1991, 113, 2598–2610. [Google Scholar]
- Bonjoch, J.; Sole, D.; Bosch, J. Studies on the Synthesis of Strychnos Indole Alkaloids. Synthesis of (±)-Dehydrotubifoline. J. Am. Chem. Soc. 1995, 117, 11017–11018. [Google Scholar] [CrossRef]
- Smith, J.M.; Moreno, J.; Boal, B.W.; Garg, N.K. Fischer Indolizations as a Strategic Platform for the Total Synthesis of Picrinine. J. Org. Chem. 2015, 80, 8954–8967. [Google Scholar] [CrossRef] [PubMed]
- Witkop, B.; Patrick, J.B. An Unusual Twofold Wagner-Meerwein Rearrangement. J. Am. Chem. Soc. 1951, 73, 1558–1564. [Google Scholar] [CrossRef]
- Sato, S.; Tsunoda, M.; Suzuki, M.; Kutsuna, M.; Takido-uchi, K.; Shindo, M.; Mizuguchi, H.; Obara, H.; Ohya, H. Synthesis and Spectral Properties of Polymethine-Cyanine Dye-Nitroxide Radical Hybrid Compounds for Use as Fluorescence Probes to Monitor Reducing Species and Radicals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Roesslein, J.; Gademann, K. Preparation of Indolenines via Nucleophilic Aromatic Substitution. Org. Lett. 2019, 21, 2560–2564. [Google Scholar] [CrossRef] [PubMed]
- Kaga, A.; Hayashi, H.; Hakamata, H.; Oi, M.; Uchiyama, M.; Takita, R.; Chiba, S. Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite. Angew. Chem. Int. Ed. 2017, 56, 11807–11811. [Google Scholar] [CrossRef]
- Ong, H.H.; Agnew, M.N. Novel Tetracyclic Spiropiperidines. II. Synthesis of 2-Aryl-2,3-Dihydrospiro[benzofuran-3,4’-Piperidines]. J. Heterocycl. Chem. 1981, 18, 815–820. [Google Scholar] [CrossRef]
- Roche, S.P.; Youte Tendoung, J.-J.; Treguier, B. Advances in Dearomatization Strategies of Indoles. Tetrahedron 2015, 71, 3549–3591. [Google Scholar] [CrossRef]
- Zhuo, C.-X.; Zheng, C.; You, S.-L. Transition-Metal-Catalyzed Asymmetric Allylic Dearomatization Reactions. Acc. Chem. Res. 2014, 47, 2558–2573. [Google Scholar] [CrossRef]
- Zhang, W.; You, S.-L. Miscellaneous Asymmetric Dearomatization Reactions; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 379–389. [Google Scholar]
- James, M.J.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Synthesis of Spirocyclic Indolenines. Chem. Eur. J. 2016, 22, 2856–2881. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liu, C.; Liang, X.-W.; You, S.-L. Enantioselective Construction of Pyrroloindolines via Chiral Phosphoric Acid Catalyzed Cascade Michael Addition-Cyclization of Tryptamines. Org. Lett. 2012, 14, 4588–4590. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Jia, M.; Monari, M.; Manoni, E.; Bandini, M. Metal-Free Enantioselective Electrophilic Activation of Allenamides: Stereoselective Dearomatization of Indoles. Angew. Chem. Int. Ed. 2014, 53, 13854–13857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-C.; Zhao, J.-J.; Jiang, F.; Sun, S.-B.; Shi, F. Organocatalytic Asymmetric Arylative Dearomatization of 2,3-Disubstituted Indoles Enabled by Tandem Reactions. Angew. Chem. Int. Ed. 2014, 53, 13912–13915. [Google Scholar] [CrossRef]
- Nakazaki, M. Alkylation of 2,3-Dimethylindole in Liquid Ammonia. Bull. Chem. Soc. Jpn. 1959, 32, 838–840. [Google Scholar] [CrossRef] [Green Version]
- Nakazaki, M. Alkylation of Sodio-2,3-Dimethylindole and Sodiotetrahydrocarbazole in Nonpolar Solvent. Bull. Chem. Soc. Jpn. 1961, 34, 334–337. [Google Scholar] [CrossRef]
- Jackson, A.H.; Lynch, P.P. Electrophilic Substitution in Indoles. Part 12. Kinetic Studies of the Rearrangement of 3,3-Disubstituted Indolenines to 2,3-Disubstituted Indoles. J. Chem. Soc. Perkin Trans. 2 1987, 9, 1215–1219. [Google Scholar] [CrossRef]
- Fishwick, C.W.G.; Jones, A.D.; Mitchell, M.B. Regio- and Chemoselective Alkylation of 2,3-Dialkylindoles. A Convenient Preparation of 2,3,3-Trialkyl-3H-Indoles. Heterocycles 1991, 32, 685–692. [Google Scholar] [CrossRef]
- Solovjova, J.; Martynaitis, V.; Mangelinckx, S.; Holzer, W.; De Kimpe, N.; Sackus, A. Synthesis and Ring Opening of Alkaloid-Type Compounds with a Novel Indolo[2,3-c][2]benzazepine Skeleton. Synlett 2009, 19, 3119–3122. [Google Scholar] [CrossRef]
- Lin, A.; Yang, J.; Hashim, M. N-Indolyltriethylborate: A Useful Reagent for Synthesis of C3-Quaternary Indolenines. Org. Lett. 2013, 15, 1950–1953. [Google Scholar] [CrossRef]
- Kandukuri, S.R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I.D.; Escudero-Adan, E.C.; Melchiorre, P. X-Ray Characterization of an Electron Donor-Acceptor Complex that Drives the Photochemical Alkylation of Indoles. Angew. Chem. Int. Ed. 2015, 54, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. Pd-Catalyzed C3-Selective Allylation of Indoles with Allyl Alcohols Promoted by Triethylborane. J. Am. Chem. Soc. 2005, 127, 4592–4593. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Quancard, J. Palladium-Catalyzed Enantioselective C-3 Allylation of 3-Substituted-1H-Indoles Using Trialkylboranes. J. Am. Chem. Soc. 2006, 128, 6314–6315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Rawal, V.H. Palladium-Catalyzed C3-Benzylation of Indoles. J. Am. Chem. Soc. 2012, 134, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, T.D.; Zhu, Y.; Kagawa, N.; Rawal, V.H. Palladium-Catalyzed Decarboxylative Allylation and Benzylation of N-Alloc and N-Cbz Indoles. Org. Lett. 2013, 15, 1140–1143. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, N.; Malerich, J.P.; Rawal, V.H. Palladium-Catalyzed β-Allylation of 2,3-Disubstituted Indoles. Org. Lett. 2008, 10, 2381–2384. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cook, M.J. Palladium Catalyzed Decarboxylative Rearrangement of N-Alloc Indoles. Org. Lett. 2013, 15, 1088–1091. [Google Scholar] [CrossRef]
- Rocchigiani, L.; Jia, M.; Bandini, M.; Macchioni, A. Assessing the Role of Counterion in Gold-Catalyzed Dearomatization of Indoles with Allenamides by NMR Studies. ACS Catal. 2015, 5, 3911–3915. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, T.D.; Nibbs, A.E.; Zhu, Y.; Rawal, V.H. Rapid Access to Spirocyclized Indolenines via Palladium-Catalyzed Cascade Reactions of Tryptamine Derivatives and Propargyl Carbonate. Org. Lett. 2014, 16, 3480–3483. [Google Scholar] [CrossRef] [Green Version]
- Nibbs, A.E.; Montgomery, T.D.; Zhu, Y.; Rawal, V.H. Access to Spirocyclized Oxindoles and Indolenines via Palladium-Catalyzed Cascade Reactions of Propargyl Carbonates with 2-Oxotryptamines and Tryptamines. J. Org. Chem. 2015, 80, 4928–4941. [Google Scholar] [CrossRef]
- Peng, B.-J.; Wu, W.-T.; Yang, S.-C. Platinum-catalyzed allylation of 2,3-disubstituted indoles with allylic acetates. Molecules 2017, 22, 2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Chisholm, J.D. Friedel-Crafts Alkylation of Indoles with Trichloroacetimidates. Tetrahedron Lett. 2019, 60, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.A.; Radal, L.; Chisholm, J.D. Synthesis of 3,3’-Disubstituted Indolenines Utilizing the Lewis Acid Catalyzed Alkylation of 2,3-Disubstituted Indoles with Trichloroacetimidates. Synlett 2017, 28, 2335–2339. [Google Scholar] [PubMed]
- Ali, I.A.I.; El Ashry, E.S.H.; Schmidt, R.R. Protection of Hydroxy Groups with Diphenylmethyl and 9-Fluorenyl Trichloroacetimidates Effect on Anomeric Stereocontrol. Eur. J. Org. Chem. 2003, 4121–4131. [Google Scholar] [CrossRef]
- Adhikari, A.A.; Shah, J.P.; Howard, K.T.; Russo, C.M.; Wallach, D.R.; Linaburg, M.R.; Chisholm, J.D. Convenient Formation of Diphenylmethyl Esters Using Diphenylmethyl Trichloroacetimidate. Synlett 2014, 25, 283–287. [Google Scholar]
- Shah, J.P.; Russo, C.M.; Howard, K.T.; Chisholm, J.D. Spontaneous Formation of PMB Esters Using 4-Methoxybenzyl-2,2,2-Trichloroacetimidate. Tetrahedron Lett. 2014, 55, 1740–1742. [Google Scholar] [CrossRef]
- Duffy, B.C.; Howard, K.T.; Chisholm, J.D. Alkylation of Thiols with Trichloroacetimidates under Neutral Conditions. Tetrahedron Lett. 2015, 56, 3301–3305. [Google Scholar] [CrossRef]
- Wallach, D.R.; Chisholm, J.D. Alkylation of Sulfonamides with Trichloroacetimidates under Thermal Conditions. J. Org. Chem. 2016, 81, 8035–8042. [Google Scholar] [CrossRef]
- Howard, K.T.; Duffy, B.C.; Linaburg, M.R.; Chisholm, J.D. Formation of DPM Ethers Using O-Diphenylmethyl Trichloroacetimidate under Thermal Conditions. Org. Biomol. Chem. 2016, 14, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Mahajani, N.S.; Chisholm, J.D. Promoter Free Allylation of Trichloroacetimidates with Allyltributylstannanes under Thermal Conditions to Access the Common 1,1’-Diarylbutyl Pharmacophore. Org. Biomol. Chem. 2018, 16, 4008–4012. [Google Scholar] [CrossRef]
- Mahajani, N.S.; Meador, R.I.L.; Smith, T.J.; Canarelli, S.E.; Adhikari, A.A.; Shah, J.P.; Russo, C.M.; Wallach, D.R.; Howard, K.T.; Millimaci, A.M.; et al. Ester Formation via Symbiotic Activation Utilizing Trichloroacetimidate Electrophiles. J. Org. Chem. 2019, 84, 7871–7882. [Google Scholar] [CrossRef] [PubMed]
- Panknin, O.; Baeurle, S.; Ring, S.; Schwede, W.; Bone, W.; Nowak-Reppel, K.; Bender, E.; Nubbemeyer, R.; Gnoth, M.J. Preparation of Spiroindoline Compounds as Gonadotropin- Releasing Hormone Receptor Antagonists Useful in the Treatment of Sex Hormone-Related Diseases. Germany Patent WO2013107743A1, 25 July 2013. [Google Scholar]
- Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. Enantioselective Construction of Spiroindolenines by Ir-Catalyzed Allylic Alkylation Reactions. J. Am. Chem. Soc. 2010, 132, 11418–11419. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.-J.; Tian, S.-K. A Highly Enantioselective Catalytic Mannich Reaction of Indolenines with Ketones. Adv. Synth. Catal. 2013, 355, 1715–1718. [Google Scholar] [CrossRef]
- Wessel, H.-P.; Iversen, T.; Bundle, D.R. Acid-Catalysed Benzylation and Allylation by Alkyl Trichloroacetimidates. J. Chem. Soc. Pekin 1 1985, 2247–2250. [Google Scholar] [CrossRef]
- Bachi, M.D.; Korshin, E.E.; Hoos, R.; Szpilman, A.M.; Ploypradith, P.; Xie, S.; Shapiro, T.A.; Posner, G.H. A Short Synthesis and Biological Evaluation of Potent and Nontoxic Antimalarial Bridged Bicyclic β-Sulfonyl-Endoperoxides. J. Med. Chem. 2003, 46, 2516–2533. [Google Scholar] [CrossRef] [PubMed]
- Li, C.K.; Li, W.B.; Wang, J.B. Gold(I)-Catalyzed Arylmethylation of Terminal Alkynes. Tetrahedron Lett. 2009, 50, 2533–2535. [Google Scholar] [CrossRef]
- Adhikari, A.A.; Suzuki, T.; Gilbert, R.T.; Linaburg, M.R.; Chisholm, J.D. Rearrangement of Benzylic Trichloroacetimidates to Benzylic Trichloroacetamides. J. Org. Chem. 2017, 82, 3982–3989. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Equiv Imidate 11 | Equiv TMSOTf | Temp. (°C) | Reaction Time | Yield (%) |
---|---|---|---|---|---|
1 | 2.2 | 0 | 84 | 24 h | 0 |
2 | 2.2 | 0.2 | rt | 3 h | 27 |
3 | 2.2 | 0.2 | rt | 6 h | 20 |
4 | 2.2 | 0.2 | 84 | 3 h | 41 |
5 | 3.0 | 0.2 | rt | 3 h | 31 |
6 | 2.5 | 0.5 | rt | 3 h | 39 |
7 | 2.5 | 1.0 | rt | 3 h | 61 |
8 | 2.5 | 1.5 | rt | 3 h | 59 |
9 | 2.5 | 1.0 | 84 | 3 h | 59 |
Entry | Indole | Product | Yield (%) |
---|---|---|---|
1 | 14a | 15a | 61 |
2 | 14b | 15b | 61 |
3 | 14c | 15c | 41 |
4 | 14d | 15d | 45 |
5 | 14e | 15e | 68 |
6 | 10 | 13 | 70 |
7 | 14f | 15f | 0 a |
8 | 14g | 15g | 34 |
9 | 14h | 15h | 0 b |
Entry | Imidate | Product | Yield (%) |
---|---|---|---|
1 | 11 | 15a | 61 (59 a) |
2 | 16 | 15i | 40 (46 a) |
3 | 17 | 15j | 12 (20 a) |
4 | 18 | 15k | trace (24 a) |
5 | 19 | 15l | 0 b |
6 | 20 | 15m | 30 (38 a) |
7 | 21 | 15n | trace (52 a) |
8 | 22 | 15o | trace (45 a) |
9 | 23 | 15p | trace (63 a) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, T.; Mate, N.A.; Adhikari, A.A.; Chisholm, J.D. Dialkylation of Indoles with Trichloroacetimidates to Access 3,3-Disubstituted Indolenines. Molecules 2019, 24, 4143. https://doi.org/10.3390/molecules24224143
Suzuki T, Mate NA, Adhikari AA, Chisholm JD. Dialkylation of Indoles with Trichloroacetimidates to Access 3,3-Disubstituted Indolenines. Molecules. 2019; 24(22):4143. https://doi.org/10.3390/molecules24224143
Chicago/Turabian StyleSuzuki, Tamie, Nilamber A. Mate, Arijit A. Adhikari, and John D. Chisholm. 2019. "Dialkylation of Indoles with Trichloroacetimidates to Access 3,3-Disubstituted Indolenines" Molecules 24, no. 22: 4143. https://doi.org/10.3390/molecules24224143
APA StyleSuzuki, T., Mate, N. A., Adhikari, A. A., & Chisholm, J. D. (2019). Dialkylation of Indoles with Trichloroacetimidates to Access 3,3-Disubstituted Indolenines. Molecules, 24(22), 4143. https://doi.org/10.3390/molecules24224143