Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Characterization
2.1.1. UV-Vis Absorption Spectra Analysis
2.1.2. FT-IR Spectra Analysis
2.2. Multivariate Statistical Analysis
2.2.1. Principal Component Analysis (PCA)
2.2.2. Partial Least Squares Discriminant Analysis (PLS-DA)
2.2.3. Linear Discriminant Analysis (LDA)
3. Materials and Methods
3.1. Samples
3.2. Spectral Measurements
3.3. Multivariate Statistical Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- The Common Organisation of Agricultural Markets in the EU. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=celex:32013R1308 (accessed on 15 November 2019).
- Teil, G. Protecting Appellations of Origin: One Hundred Years of Efforts and Debates; Springer: Berlin, Germany, 2017; pp. 147–171. [Google Scholar]
- Bevin, C.J.; Dambergs, R.G.; Fergusson, A.J.; Cozzolino, D. Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Anal. Chim. Acta 2008, 621, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Maquet, A.; Aries, E.; Exarchou, V.; Maretto, F. European Reference Centre for Control in the Wine Sector-Analytical methods for the Determination of Geographical Origin, Varietal Composition and Vintage of Wines; JRC98291; European Commission, Joint Research Centre–Institute for Reference Materials and Measurements: Geel, Belgium, 2015; 48p, Available online: https://ec.europa.eu/jrc (accessed on 15 January 2019).
- Yu, J.; Wang, H.; Zhan, J.; Huang, W. Review of recent UV–Vis and infrared spectroscopy researches on wine detection and discrimination. Appl. Spectrosc. Rev. 2018, 53, 65–86. [Google Scholar] [CrossRef]
- Đurđić, S.; Pantelić, M.; Trifković, J.; Vukojević, V.; Natić, M.; Tešić, Ž.; Mutić, J. Elemental composition as a tool for the assessment of type, seasonal variability, and geographical origin of wine and its contribution to daily elemental intake. RSC Adv. 2017, 7, 2151–2162. [Google Scholar] [CrossRef]
- Fan, S.; Zhong, Q.; Gao, H.; Wang, D.; Li, G.; Huang, Z. Elemental profile and oxygen isotope ratio (δ18O) for verifying the geographical origin of Chinese wines. J. Food Drug Anal. 2018, 26, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Analysis and assessment of Madeira wine ageing over an extended time period through GC–MS and chemometric analysis. Anal. Chim. Acta 2010, 660, 8–21. [Google Scholar] [CrossRef]
- Soufleros, E.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Stój, A.; Czernecki, T.; Domagała, D.; Targoński, Z. Application of Volatile Compounds Analysis for Distinguishing between Red Wines from Poland and from Other European Countries. S. Afr. J. Enol. Vitic. 2017, 38, 245–263. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.-P.; De Rességuier, L. Soil-related terroir factors: A review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Troianou, V.E.; Pappas, C.S.; Kotseridis, Y.S.; Polissiou, M.G. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chem. 2008, 111, 192–196. [Google Scholar] [CrossRef]
- Causon, T.J.; Ivanova-Petropulos, V.; Petrusheva, D.; Bogeva, E.; Hann, S. Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Anal. Chim. Acta 2019, 1052, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Rubert, J.; Lacina, O.; Fauhl-Hassek, C.; Hajslova, J. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: A reliable tool for wine authentication? Anal. Bioanal. Chem. 2014, 406, 6791–6803. [Google Scholar] [CrossRef]
- Amargianitaki, M.; Spyros, A. NMR-based metabolomics in wine quality control and authentication. Chem. Biol. Technol. Agric. 2017, 4, 9. [Google Scholar] [CrossRef]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: Grape variety, geographical origin, year of vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef]
- Catalano, V.; Moreno-Sanz, P.; Lorenzi, S.; Grando, M.S. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication. J. Agric. Food Chem. 2016, 64, 6969–6984. [Google Scholar] [CrossRef]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?–Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Basalekou, M.; Pappas, C.; Kotseridis, Y.; Tarantilis, P.A.; Kontaxakis, E.; Kallithraka, S. Red Wine Age Estimation by the Alteration of Its Color Parameters: Fourier Transform Infrared Spectroscopy as a Tool to Monitor Wine Maturation Time. J. Anal. Methods Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Ruiz-Rodríguez, A.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. FT-IR, Vis spectroscopy, color and multivariate analysis for the control of ageing processes in distinctive Spanish wines. Food Chem. 2019, 277, 6–11. [Google Scholar] [CrossRef]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Development of a fast and reliable method for long- and short-term wine age prediction. Talanta 2011, 86, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; Luque de Castro, M.D.; Pérez, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Ultraviolet–visible spectroscopy and pattern recognition methods for differentiation and classification of wines. Food Chem. 2006, 97, 166–175. [Google Scholar] [CrossRef]
- Casale, M.; Oliveri, P.; Armanino, C.; Lanteri, S.; Forina, M. NIR and UV–vis spectroscopy, artificial nose and tongue: Comparison of four fingerprinting techniques for the characterisation of Italian red wines. Anal. Chim. Acta 2010, 668, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Magdas, D.A.; Guyon, F.; Feher, I.; Pinzaru, S.C. Wine discrimination based on chemometric analysis of untargeted markers using FT-Raman spectroscopy. Food Control 2018, 85, 385–391. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L.; De Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef]
- Callao, M.P.; Ruisánchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control 2018, 86, 283–293. [Google Scholar] [CrossRef]
- Geană, E.-I.; Sandru, C.; Stanciu, V.; Ionete, R.E. Elemental Profile and 87Sr/86Sr Isotope Ratio as Fingerprints for Geographical Traceability of Wines: An Approach on Romanian Wines. Food Anal. Methods 2017, 10, 63–73. [Google Scholar] [CrossRef]
- Geana, E.I.; Marinescu, A.; Iordache, A.M.; Sandru, C.; Ionete, R.E.; Bala, C. Differentiation of Romanian Wines on Geographical Origin and Wine Variety by Elemental Composition and Phenolic Components. Food Anal. Methods 2014. [Google Scholar] [CrossRef]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Dinca, O.R.; Ionete, R.E.; Costinel, D.; Geana, I.E.; Popescu, R.; Stefanescu, I.; Radu, G.L. Regional and Vintage Discrimination of Romanian Wines Based on Elemental and Isotopic Fingerprinting. Food Anal. Methods 2016, 9, 2406–2417. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Ionete, R.E.; Stefanescu, I.; Artem, V.; Bala, C. Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chem. 2016, 192, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Costinel, D.; Marinescu, A.; Ionete, R.E.; Bala, C. Characterization of Wines by Trans -Resveratrol Concentration: A Case Study of Romanian Varieties. Anal. Lett. 2014, 47, 1737–1746. [Google Scholar] [CrossRef]
- Hosu, A.; Cimpoiu, C. HPTLC fingerprinting: A useful tool for white wines authentication. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 303–307. [Google Scholar] [CrossRef]
- Hosu, A.; Cristea, V.-M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef]
- Hosu, A.; Floare-Avram, V.; Magdas, D.A.; Feher, I.; Inceu, M.; Cimpoiu, C. The Influence of the Variety, Vineyard, and Vintage on the Romanian White Wines Quality. J. Anal. Methods Chem. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Banc, R.; Loghin, F.; Miere, D.; Fetea, F.; Socaciu, C. Romanian Wines Quality and Authenticity Using FT-MIR Spectroscopy Coupled with Multivariate Data Analysis. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Topala, C.M.; Tataru, L.D. Rapid Method for the Discrimination of Romanian Wines Based on Mid-Infrared Spectroscopy and Chemometrics. Rev. Chim.(Bucharest) 2018, 69, 469–473. [Google Scholar]
- Magdas, D.A.; Pirnau, A.; Feher, I.; Guyon, F.; Cozar, B.I. Alternative approach of applying 1H NMR in conjunction with chemometrics for wine classification. LWT 2019, 109, 422–428. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; du Toit, W. The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen: London, UK, 2019; pp. 1–21. Available online: https://www.intechopen.com/books/frontiers-and-new-trends-in-the-science-of-fermented-food-and-beverages/the-role-of-uv-visible-spectroscopy-for-phenolic-compounds-quantification-in-winemaking (accessed on 15 November 2019).
- Martelo-Vidal, M.J.; Domínguez-Agis, F.; Vázquez, M. Ultraviolet/visible/near-infrared spectral analysis and chemometric tools for the discrimination of wines between subzones inside a controlled designation of origin: A case study of Rías Baixas. Aust. J. Grape Wine Res. 2013, 19, 62–67. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P.A. Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem. 2011, 126, 673–678. [Google Scholar] [CrossRef]
- Boulet, J.C.; Williams, P.; Doco, T. A Fourier transform infrared spectroscopy study of wine polysaccharides. Carbohydr. Polym. 2007, 69, 79–85. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Cantarelli, M.Á.; Pellerano, R.G.; Marchevsky, E.J.; Camiña, J.M. Classification of Argentinean Sauvignon Blanc Wines by UV Spectroscopy and Chemometric Methods. J. Food Sci. 2013, 78, C432–C436. [Google Scholar] [CrossRef] [PubMed]
- Riovanto, R.; Cynkar, W.U.; Berzaghi, P.; Cozzolino, D. Discrimination between Shiraz Wines from Different Australian Regions: The Role of Spectroscopy and Chemometrics. J. Agric. Food Chem. 2011, 59, 10356–10360. [Google Scholar] [CrossRef] [PubMed]
- Rasines-Perea, Z.; Prieto-Perea, N.; Romera-Fernández, M.; Berrueta, L.A.; Gallo, B. Fast determination of anthocyanins in red grape musts by Fourier transform mid-infrared spectroscopy and partial least squares regression. Eur. Food Res. Technol. 2015, 240, 897–908. [Google Scholar] [CrossRef]
- Silva, S.D.; Feliciano, R.P.; Boas, L.V.; Bronze, M.R. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014, 150, 489–493. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, B.; Lu, J.; Xu, S. Analysis of Metabolites in Cabernet Sauvignon and Shiraz Dry Red Wines from Shanxi by 1H NMR Spectroscopy Combined with Pattern Recognition Analysis. Open Chem. 2018, 16, 446–452. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
FT-IR Spectral Regions (cm−1) | Groups | Assignment | Reference | |
---|---|---|---|---|
Functional group region 4000–1500 cm−1 | 3500–3000 | –OH | Water, alcohols, and phenols | [39] |
3000–2800 | C–H stretching of hydrocarbons –CH3 asymmetric stretching vibration O–H stretching of carboxylic acids | Free phenolic acids and catechins, Polyols (glycerol), | [39] | |
2300–2100 | C–H combinations vibrations and overtones | Ethanol and sugars | [43] | |
1900–1600 | O–H stretching C–H3 stretch first overtone C–H2, C–H stretch first overtones | Ethanol, glucose, and water | [43] | |
1700 | C=O | Organic acids | [39] | |
1712–1704 | C=O | Esters of hydrolysable tannins, especially derivatives of gallic acid and flavors | [15,22] | |
1610–1614 1519–1516 | C=C | Aromatic compounds, flavonoids | [15,22] | |
1600–1530 | C–N | Amino acids and their derivatives | [39] | |
Fingerprint region (1500–900 cm−1) | 1457–1288 | C=O, C=C, –CH2–, C–H, –CH3, O–H | Aldehydes, carboxylic acids, proteins, and esters | [44] |
1250–950 | stretching and bending vibrations | Hydrolysable and condensed tannins Glucose, oligo- and polysaccharides, alcohols (ethanol) | [39,45] | |
1200 1110–1107 1068–1062 | stretching vibration of C–O O–H stretch second overtones | Sugars and organic acids | [15] | |
<1000 | stretching and bending vibrations | Phosphates, phenolics, mono-substituted phenyl derivatives, unsaturated lipids, carotenoids | [39] |
Fingerprinting Technique: UV-Vis/FT-IR | ||||
---|---|---|---|---|
Discrimination Criterion | Calibration Set | Validation Set | ||
RMSEC | R2 | RMSEV | R2 | |
Wine Varietal Discrimination | ||||
Cabernet Sauvignon | 0.233/0.131 | 0.668/0.895 | 0.261/0.169 | 0.582/0.825 |
Feteasca Neagra | 0.175/0.136 | 0.826/0.859 | 0.197/0.182 | 0.780/0.813 |
Merlot | 0.202/0.121 | 0.750/0.911 | 0.223/0.157 | 0.694/0.848 |
Mamaia | 0.202/0.115 | 0.750/0.918 | 0.225/0.151 | 0.689/0.860 |
Pinot Noire | 0.206/0.104 | 0.673/0.918 | 0.228/0.135 | 0.600/0.859 |
Harvest Year Discrimination | ||||
2009 | 0.152/0.115 | 0.748/0.855 | 0.174/0.146 | 0.671/0.769 |
2010 | 0.168/0.085 | 0.693/0.922 | 0.187/0.108 | 0.620/0.872 |
2011 | 0.155/0.138 | 0.748/0.828 | 0.179/0.177 | 0.711/0.727 |
2012 | 0.216/0.129 | 0.581/0.849 | 0.243/0.163 | 0.470/0.762 |
2013 | 0.204/0.129 | 0.546/0.816 | 0.232/0.163 | 0.414/0.713 |
2014 | 0.199/0.148 | 0.569/0.760 | 0.225/0.184 | 0.451/0.632 |
2015 | 0.181/0.114 | 0.706/0.900 | 0.204/0.142 | 0.626/0.844 |
2016 | 0.167/0.132 | 0.696/0.754 | 0.186/0.163 | 0.624/0.626 |
2017 | 0.193/0.138 | 0.597/0.794 | 0.216/0.173 | 0.491/0.674 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geană, E.-I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules 2019, 24, 4166. https://doi.org/10.3390/molecules24224166
Geană E-I, Ciucure CT, Apetrei C, Artem V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules. 2019; 24(22):4166. https://doi.org/10.3390/molecules24224166
Chicago/Turabian StyleGeană, Elisabeta-Irina, Corina Teodora Ciucure, Constantin Apetrei, and Victoria Artem. 2019. "Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination" Molecules 24, no. 22: 4166. https://doi.org/10.3390/molecules24224166
APA StyleGeană, E. -I., Ciucure, C. T., Apetrei, C., & Artem, V. (2019). Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules, 24(22), 4166. https://doi.org/10.3390/molecules24224166