A Chemiluminescent Method for the Detection of H2O2 and Glucose Based on Intrinsic Peroxidase-Like Activity of WS2 Quantum Dots
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of Chemical Structure and Morphology of WS2 QDs
2.2. Investigation of Peroxidase-Like Activity of WS2 QDs
2.2.1. Colorimetry Investigations
2.2.2. Electrochemical Investigations
2.2.3. Chemiluminescence Investigations
2.3. Catalytic Activity of WS2 QDs
2.4. Determination of H2O2 and Glucose Using a CL System
2.4.1. Analytical Figures of Merit
2.4.2. Selectivity
2.4.3. Analysis of Real Samples
3. Materials and Methods
3.1. Instruments and Materials
3.2. Synthesis of WS2 QDs
3.3. Investigation of Peroxidase-Like Activity of WS2 QDs
3.3.1. Colorimetric Experiments
Process for the Investigation of Steady-State Kinetics
3.3.2. Electrochemical Experiments
3.4. Measuring Glucose and H2O2 by CL
3.5. Stability
3.6. Determination of Glucose in Human Blood
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Salimi, A.; Hallaj, R.; Soltanian, S.; Mamkhezri, H. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta. 2007, 594, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Wong, G.T. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin–horseradish peroxidase fluorometric method. Talanta 1999, 48, 1031–1038. [Google Scholar] [CrossRef]
- Sang, Y.; Zhang, L.; Li, Y.F.; Chen, L.Q.; Xu, J.L.; Huang, C.Z. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal. Chim. Acta. 2010, 659, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Chen, H.; Deng, L.; Dong, S. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Biosens. Bioelectron. 2008, 23, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Garceau, M.E.; Gao, P. Liquid chromatographic determination of residual hydrogen peroxide in pharmaceutical excipients using platinum and wired enzyme electrodes. J. Pharmaceut. Biomed. 2003, 31, 1203–1210. [Google Scholar] [CrossRef]
- Zhu, M.; Han, S.; Yuan, Z. β-Cyclodextrin polymer as the immobilization matrix for peroxidase and mediator in the fabrication of a sensor for hydrogen peroxide. J. Electroanal. Chem. 2000, 480, 255–261. [Google Scholar] [CrossRef]
- Xu, Y.; Pehrsson, P.E.; Chen, L.; Zhang, R.; Zhao, W. Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C. 2007, 111, 8638–8643. [Google Scholar] [CrossRef]
- Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef]
- Khataee, A.; Lotfi, R.; Hasanzadeh, A.; Iranifam, M.; Joo, S.W. Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots. Spectrochim. Acta. A. 2016, 157, 88–95. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Kołacińska, K. Recent advances in flow injection analysis. Analyst 2016, 141, 2085–2139. [Google Scholar] [CrossRef]
- Su, Y.; Deng, D.; Zhang, L.; Song, H.; Lv, Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. TrAC-Trends Anal. Chem. 2016, 82, 394–411. [Google Scholar] [CrossRef]
- Pokropivny, V.; Ivanovskii, A.L. New nanoforms of carbon and boron nitride. Russ. Chem. Rev. 2008, 77, 837. [Google Scholar] [CrossRef]
- Kim, Y.T.; Han, J.H.; Hong, B.H.; Kwon, Y.U. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv. Mater. 2010, 22, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, D. Colloidal lithography-the art of nanochemical patterning. Chem. Asian J. 2009, 4, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Gautam, U.K.; Vivekchand, S.; Govindaraj, A.; Rao, C. GaS and GaSe nanowalls and their transformation to Ga2O3 and GaN nanowalls. Chem. Commun. 2005, 3995–3997. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, B.H.; Kim, W.Y.; Min, S.K.; Kim, Y.; Jouravlev, M.V.; Bose, R.; Kim, K.S.; Hwang, I.-C.; Kaufman, L.J. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 2009, 460, 498. [Google Scholar] [CrossRef]
- Stouwdam, J.W.; Janssen, R.A. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 2008, 18, 1889–1894. [Google Scholar] [CrossRef]
- Lee, W.; Kang, S.H.; Kim, J.-Y.; Kolekar, G.B.; Sung, Y.-E.; Han, S.-H. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology 2009, 20, 335706. [Google Scholar] [CrossRef]
- Mokerov, V.; Fedorov, Y.V.; Velikovski, L.; Scherbakova, M.Y. New quantum dot transistor. Nanotechnology 2001, 12, 552. [Google Scholar] [CrossRef]
- Ustinov, V.; Zhukov, A.; Kovsh, A.; Mikhrin, S.; Maleev, N.; Volovik, B.; Musikhin, Y.G.; Shernyakov, Y.M.; Kondat’eva, E.Y.; Maximov, M. Long-wavelength quantum dot lasers on GaAs substrates. Nanotechnology 2000, 11, 397. [Google Scholar] [CrossRef]
- Bagher, A.M. Quantum dots applications. Sens. Transducers 2016, 198, 37. [Google Scholar]
- Kim, H.; Beack, S.; Han, S.; Shin, M.; Lee, T.; Park, Y.; Kim, K.S.; Yetisen, A.K.; Yun, S.H.; Kwon, W. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv. Mater. 2018, 30, 1701460. [Google Scholar] [CrossRef]
- Kvaratskhelia, M.; Winkel, C.; Thorneley, R.N. Purification and characterization of a novel class III peroxidase isoenzyme from tea leaves. Plant. Physiol. 1997, 114, 1237–1245. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Wiester, M.J.; Ulmann, P.A.; Mirkin, C.A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Edit. 2011, 50, 114–137. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wu, J.; Lyle, S.; Zehr, K.; Cao, L.; Gao, D. Magnetite nanoparticle-linked immunosorbent assay. J. Phys. Chem. C. 2008, 112, 17357–17361. [Google Scholar] [CrossRef]
- Lin, T.; Zhong, L.; Guo, L.; Fu, F.; Chen, G. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.C.; Müller, W.E.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Zhao, C.; Qu, K.; Ren, J.; Qu, X. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. Eur. J. 2010, 16, 3617–3621. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697. [Google Scholar] [CrossRef]
- Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. J. Mater. Res. 2006, 21, 2726–2743. [Google Scholar] [CrossRef]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.-T.; Prasad, P.N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef] [PubMed]
- Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446. [Google Scholar] [CrossRef]
- Khataee, A.; Eghbali, P.; Irani-nezhad, M.H.; Hassani, A. Sonochemical synthesis of WS2 nanosheets and its application in sonocatalytic removal of organic dyes from water solution. Ultrason. Sonochem. 2018, 48, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, D.; Wu, P. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127–1136. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Liu, Z.; Tan, C.; Huang, Y.; Li, B.; Zhao, M.; Xie, L.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. Int. Edit. 2015, 54, 5425–5428. [Google Scholar] [CrossRef]
- Kim, M.-J.; Jeon, S.-J.; Kang, T.W.; Ju, J.-M.; Yim, D.; Kim, H.-I.; Park, J.H.; Kim, J.-H. 2H-WS2 quantum dots produced by modulating the dimension and phase of 1T-nanosheets for antibody-free optical sensing of neurotransmitters. ACS Appl. Mater. Interfaces 2017, 9, 12316–12323. [Google Scholar] [CrossRef]
- Das, S.; Kim, M.; Lee, J.-W.; Choi, W. Synthesis, properties, and applications of 2-D materials: A comprehensive review. Crit. Rev. Solid State 2014, 39, 231–252. [Google Scholar] [CrossRef]
- Štengl, V.; Henych, J.; Slušná, M.; Ecorchard, P. Ultrasound exfoliation of inorganic analogues of graphene. Nanoscale Res. Lett. 2014, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, D.; Damien, D.; Shaijumon, M.M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297–5303. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-C.; Wang, M.; Yong, A.M.; Wong, S.Y.; Zhang, X.-H.; Tan, H.; Chang, A.Y.; Li, X.; Wang, J. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 2011, 47, 11615–11617. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 2012, 48, 380–382. [Google Scholar] [CrossRef]
- Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S.F. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 10693–10697. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Y.; Zhang, S.; Ross, I.M.; Ong, A.C.; Allwood, D.A. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 2013, 7, 8214–8223. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, C.; Gu, W.; Ding, C.; Li, X.; Xian, Y. Facile synthesis of water-soluble WS2 quantum dots for turn-on fluorescent measurement of lipoic acid. J. Phys. Chem. C 2016, 120, 12170–12177. [Google Scholar] [CrossRef]
- Han, S.; Liu, E.; Li, H. Flow injection chemiluminescence determination of hemin using the rhodamine B–H2O2–NaOH system. Microchim. Acta 2005, 149, 281–286. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, M.; Jin, X.; Zhang, B.; Chen, H.; Guo, N. Flow–injection chemiluminescence determination of ascorbic acid by use of the cerium (IV)–Rhodamine B system. Anal. Chim. Acta 2002, 464, 289–293. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, X.; Zhou, M.; Zhang, Z.; Teng, X.; Chen, H. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium (IV) in sulfuric acid medium. Anal. Chim. Acta 2003, 489, 173–181. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Khataee, A.; Oskoei, Y.M.; Fattahi, H.; Bagheri, N. Selective chemiluminescence method for the determination of trinitrotoluene based on molecularly imprinted polymer-capped ZnO quantum dots. New J. Chem. 2017, 41, 10659–10667. [Google Scholar] [CrossRef]
- Vahid, B.; Hassanzadeh, J.; Abolhasani, J.; Khodakarami, B. Inhibition of rhodamine B–ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury (II) ions. Microchim. Acta 2016, 126, 326–331. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Khataee, A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta 2018, 178, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, J.; Gao, C.; Zhang, M.; Chen, J.; Qiu, H. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 2015, 140, 2857–2863. [Google Scholar] [CrossRef]
- Topoglidis, E.; Astuti, Y.; Duriaux, F.; Grätzel, M.; Durrant, J.R. Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir 2003, 19, 6894–6900. [Google Scholar] [CrossRef]
- Khataee, A.; Irani-Nezhad, M.H.; Hassanzadeh, J. Improved peroxidase mimetic activity of a mixture of WS2 nanosheets and silver nanoclusters for chemiluminescent quantification of H2O2 and glucose. Microchim. Acta 2018, 185, 190. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Irani-nezhad, M.H.; Hassanzadeh, J.; Joo, S.W. Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: Colorimetric, fluorometric and electrochemical studies. J. Colloid Interface Sci. 2018, 515, 39–49. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Li, H.; Zhu, R.; Shao, Q.; Yang, S.; Xu, J. NiO nanoparticles modified with 5, 10, 15, 20-tetrakis (4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors |
Materials Used | Method Applied | LOD (nmol·L−1) | Linear Range (µmol·L−1) | Stability | Reference |
---|---|---|---|---|---|
Hemin-functionalized WS2 nanostructures (NS) | Colorimetric | 1500 | 5–200 | - | [54] |
Mb nanoporous ZnO films | Electrochemical | 2000 | 10–1800 | 2 weeks | [55] |
WS2 NS and AgNC mixture | Stopped-flow CL | 0.6 | 0.0025–1.5 | 1 month | [56] |
WS2 NS/AgNC nanocomposite | Fluorescence | 21 | 0.05–400 | 1 month | [57] |
NiO nanoparticle (NP) modified with 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin | Colorimetric | 8000 | 20–100 | 2 h | [58] |
WS2 quantum dots (QDs) | Stopped-flow CL | 2.4 | 0.004–1 | 1 month | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad Irani-nezhad, M.; Khataee, A.; Hassanzadeh, J.; Orooji, Y. A Chemiluminescent Method for the Detection of H2O2 and Glucose Based on Intrinsic Peroxidase-Like Activity of WS2 Quantum Dots. Molecules 2019, 24, 689. https://doi.org/10.3390/molecules24040689
Haddad Irani-nezhad M, Khataee A, Hassanzadeh J, Orooji Y. A Chemiluminescent Method for the Detection of H2O2 and Glucose Based on Intrinsic Peroxidase-Like Activity of WS2 Quantum Dots. Molecules. 2019; 24(4):689. https://doi.org/10.3390/molecules24040689
Chicago/Turabian StyleHaddad Irani-nezhad, Mahsa, Alireza Khataee, Javad Hassanzadeh, and Yasin Orooji. 2019. "A Chemiluminescent Method for the Detection of H2O2 and Glucose Based on Intrinsic Peroxidase-Like Activity of WS2 Quantum Dots" Molecules 24, no. 4: 689. https://doi.org/10.3390/molecules24040689
APA StyleHaddad Irani-nezhad, M., Khataee, A., Hassanzadeh, J., & Orooji, Y. (2019). A Chemiluminescent Method for the Detection of H2O2 and Glucose Based on Intrinsic Peroxidase-Like Activity of WS2 Quantum Dots. Molecules, 24(4), 689. https://doi.org/10.3390/molecules24040689