The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures
Abstract
:1. Introduction
2. Results and Discussion
2.1. DNA Quantification and Purity
2.2. DNA Fragmentation and PCR Amplification
2.3. Summary Statistical Evaluation
3. Materials and Methods
3.1. Sample Preparation
3.2. DNA Extraction
3.3. DNA Quantification and Purity
3.4. DNA Fragmentation and PCR Amplification
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lo, Y.; Shaw, P. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 2018, 240, 767–774. [Google Scholar] [CrossRef]
- Mackie, I.M.; Pryde, S.E.; Gonzales-Sotelo, C.; Medina, I.; Peréz-Martín, R.; Quinteiro, J.; Rey-Mendez, M.; Rehbein, H. Challenges in the identification of species of canned fish. Trends Food Sci. Technol. 1999, 10, 9–14. [Google Scholar] [CrossRef]
- Bauer, T.; Weller, P.; Hammes, W.P.; Hertel, C. The effect of processing parameters on DNA degradation in food. Eur. Food Res. Technol. 2003, 217, 338–343. [Google Scholar] [CrossRef]
- Bossier, P. Authentication of seafood products by DNA patterns. J. Food Sci. 1999, 64, 189–193. [Google Scholar] [CrossRef]
- Lockley, A.K.; Bardsley, R.G. DNA-based methods for food authentication. Trends Food Sci. Technol. 2000, 11, 67–77. [Google Scholar] [CrossRef]
- Piskata, Z.; Pospisilova, E.; Borilova, G. Comparative study of DNA extraction methods from fresh and processed yellowfin tuna muscle tissue. Int. J. Food Prop. 2017, 20, S430–S443. [Google Scholar] [CrossRef]
- Partis, L.; Croan, D.; Guo, Z.; Clark, R.; Coldham, T.; Murby, J. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci. 2000, 54, 369–376. [Google Scholar] [CrossRef]
- Laube, I.; Zagon, J.; Broll, H. Quantitative determination of commercially relevant species in foods by real-time PCR. Int. J. Food Sci. Tech. 2007, 42, 336–341. [Google Scholar] [CrossRef]
- Fajardo, V.; Gonzalez, I.; Martin, I.; Rojas, M.; Hernandez, P.E.; Garcia, T.; Martin, R. Real-Time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures. Meat Sci. 2008, 79, 289–298. [Google Scholar] [CrossRef]
- Mafra, I.; Ferreira, I.M.; Oliveira, M.B.P. Food authentication by PCR-based methods. Eur. Food Res. Technol. 2008, 227, 649–665. [Google Scholar] [CrossRef]
- Kesmen, Z.; Gulluce, A.; Sahin, F.; Yetim, H. Identification of meat species by TaqMan-based real-time PCR assay. Meat Sci. 2009, 82, 444–449. [Google Scholar] [CrossRef]
- Kesmen, Z.; Yetiman, A.E.; Sahin, F.; Yetim, H. Detection of chicken and turkey meat in meat mixtures by using real-time PCR assays. J. Food Sci. 2012, 77, 167–170. [Google Scholar] [CrossRef]
- Yusop, M.H.M.; Mustafa, S.; Che Man, Y.B.; Omar, A.R.; Mokhtar, N.F.K. Detection of raw pork targeting porcine-specific mitochondrial cytochrome B gene by molecular beacon probe real-time polymerase chain reaction. Food Anal. Method 2012, 5, 422–429. [Google Scholar] [CrossRef]
- Izadpanah, M.; Mohebali, N.; Elyasi gorji, Z.; Farzaneh, P.; Vakhshiteh, F.; Fazeli, A.S. Simple and fast multiplex PCR method for detection of species origin in meat products. J. Food Sci. Technol. 2018, 55, 698–703. [Google Scholar] [CrossRef]
- Murugaiah, C.; Noor, Z.M.; Mastakim, M.; Bilung, L.M.; Selamat, J.; Radu, S. Meat species identification and halal authentication analysis using mitochondrial DNA. Meat Sci. 2009, 8, 57–61. [Google Scholar] [CrossRef]
- Pegels, N.; Gonzalez, I.; Lopez-Calleja, I.; Fernandez, S.; Garcia, T.; Martin, R. Evaluation of a TaqMan real-time PCR assay for detection of chicken, turkey, duck and goose material in highly processed industrial feed samples. Poultry Sci. 2012, 91, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Pegels, N.; Gonzalez, I.; Garcia, T.; Martin, R. Avian-specific real-time PCR assay for authenticity control in farm animal feed and pet foods. Food Chem. 2014, 142, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xiang, L.; Liu, Y.; Yang, L.; Cai, Y.; Quan, S.; Pan, L.; Chen, S. A novel quantitative real-time PCR method for identification and quantification of mammalian and poultry species in food. Food Control 2017, 76, 42–51. [Google Scholar] [CrossRef]
- Buntjer, J.B.; Lamine, A.; Haagsma, N.; Lenstra, J.A. Species identification by oligonucleotide hybridisation: The influence of processing of meat products. J. Sci. Food Agric. 1999, 79, 53–57. [Google Scholar] [CrossRef]
- Musto, M. DNA quality and integrity of nuclear and mitochondrial sequences from beef meat as affected by different cooking methods. Food Technol. Biotechnol. 2011, 49, 523–528. [Google Scholar]
- Camma, C.; Di Domenico, M.; Monaco, F. Development and validation of fast real-time PCR assays for species identification in raw and cooked meat mixtures. Food Control 2012, 23, 400–404. [Google Scholar] [CrossRef]
- Sakalar, E.; Abasiyanik, M.F.; Bektik, E.; Tayyrov, A. Effect of heat processing on DNA quantification of meat species. J. Food Sci. 2012, 77, N40–N43. [Google Scholar] [CrossRef]
- Di Pinto, A.; Forte, V.T.; Guastadisegni, M.C.; Martino, C.; Schena, F.P.; Tantillo, G.A. Comparison of DNA extraction methods for food analysis. Food Control 2017, 18, 76–80. [Google Scholar] [CrossRef]
- Stefanova, P.; Taseva, M.; Georgieva, T.; Gotcheva, V.; Angelov, A.A. Modified CTAB method for DNA extraction from soybean and meat products. Biotechnol. Biotechnol. Equip. 2013, 27, 3803–3810. [Google Scholar] [CrossRef]
- Muhammed, M.A.; Bindu, B.S.C.; Jini, R.; Prashanth, K.V.H.; Bhaskar, N. Evaluation of different DNA extraction methods for the detection of adulteration in raw and processed meat through polymerase chain reaction—Restriction fragment length polymorphism (PCR-RFLP). J. Food Sci. Technol. 2015, 52, 514–520. [Google Scholar] [CrossRef]
- Yalcinkaya, B.; Yumbul, E.; Mozioglu, E.; Akgoz, M. Comparison of DNA extraction methods for meat analysis. Food Chem. 2017, 221, 1253–1257. [Google Scholar] [CrossRef]
- Aslan, O.; Hamill, R.M.; Sweeney, T.; Reardon, W.; Mullen, A.M. Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: Implications for food traceability. J. Anim. Sci. 2009, 87, 57–61. [Google Scholar] [CrossRef]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microb. 1997, 63, 3741–3751. [Google Scholar]
- Cawthorn, D.; Steinman, H.A.; Witthuhn, R.C. Comparative study of different methods for the extraction of DNA from fish species commercially available in South Africa. Food Control 2011, 22, 231–244. [Google Scholar] [CrossRef]
- Matsunaga, T.; Chikuni, K.; Tanabe, R.; Muroya, S.; Shibata, K.; Yamada, J.; Shinmura, Y.A. Quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 1999, 51, 143–148. [Google Scholar] [CrossRef]
- Meyer, R.; Candrian, U.; Luthy, J. Detection of pork in heated meat products by polymerase chain reaction. J. AOAC Int. 1994, 77, 617–622. [Google Scholar] [PubMed]
- Hird, H.; Chisholm, J.; Sanchez, A.; Hernandez, M.; Goodier, R.; Schneede, K.; Boltz, C.; Popping, B. Effect of heat and pressure processing on DNA fragmentation and implications for the detection of meat using a real-time polymerase chain reaction. Food Addit. Contam. 2006, 23, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Group | Extraction | Conc | Absorb | % Opt. Abs. | Effic. (%) | Cost | Laborious | Conc | Absorb | % Opt. Abs. | Effic. (%) | Cost | Laborious | Weighted Average * | Order |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A | 39.90 | 1.93 | 100 | 100 | 2 | 3 | 6 | 3 | 2 | 3.5 | 3.5 | 3.5 | 3.65 | 2 |
1 | B | 97.50 | 1.79 | 100 | 100 | 1 | 3 | 3 | 5 | 2 | 3.5 | 7 | 3.5 | 3.6 | 1 |
1 | C | 74.30 | 1.68 | 50 | 83.3 | 2 | 2 | 4 | 6 | 4.5 | 7 | 3.5 | 7 | 5.45 | 7 |
1 | D | 18.05 | 2.01 | 50 | 100 | 1 | 3 | 8 | 2 | 4.5 | 3.5 | 7 | 3.5 | 4.8 | 5 |
1 | E | 51.20 | 1.62 | 25 | 100 | 2 | 3 | 5 | 7 | 7 | 3.5 | 3.5 | 3.5 | 4.85 | 6 |
1 | F | 35.05 | 1.31 | 0 | 100 | 2 | 3 | 7 | 8 | 8 | 3.5 | 3.5 | 3.5 | 5.55 | 8 |
1 | G | 353.45 | 1.85 | 100 | 66.7 | 3 | 1 | 1 | 4 | 2 | 8 | 1 | 8 | 4.3 | 4 |
1 | H | 133.80 | 2.04 | 37.5 | 100 | 1 | 3 | 2 | 1 | 6 | 3.5 | 7 | 3.5 | 3.8 | 3 |
2 | A | 22.70 | 1.90 | 95.8 | 94.4 | 2 | 3 | 6 | 3 | 1 | 3 | 3.5 | 3.5 | 3.3 | 2 |
2 | B | 68.50 | 1.79 | 91.7 | 100 | 1 | 3 | 2 | 4 | 2 | 1 | 7 | 3.5 | 2.55 | 1 |
2 | C | 50.70 | 1.66 | 37.5 | 77.8 | 2 | 2 | 3 | 5 | 5 | 7 | 3.5 | 7 | 5.25 | 6 |
2 | D | 9.85 | 2.00 | 54.2 | 94.4 | 1 | 3 | 8 | 1 | 4 | 3 | 7 | 3.5 | 4.45 | 4 |
2 | E | 44.80 | 1.53 | 8.3 | 94.4 | 2 | 3 | 4 | 7 | 7 | 3 | 3.5 | 3.5 | 4.5 | 5 |
2 | F | 29.30 | 1.23 | 0 | 88.9 | 2 | 3 | 5 | 8 | 8 | 5.5 | 3.5 | 3.5 | 5.75 | 7 |
2 | G | 501.50 | 1.98 | 83.3 | 66.7 | 3 | 1 | 1 | 2 | 3 | 8 | 1 | 8 | 4.3 | 3 |
2 | H | 14.70 | 1.64 | 33.3 | 88.9 | 1 | 3 | 7 | 6 | 6 | 5.5 | 7 | 3.5 | 5.9 | 8 |
3 | A | 17.40 | 1.79 | 92.9 | 75 | 2 | 3 | 7 | 3 | 2.5 | 3 | 3.5 | 3.5 | 3.8 | 3 |
3 | B | 89.50 | 1.78 | 100 | 75 | 1 | 3 | 2 | 4 | 1 | 3 | 7 | 3.5 | 2.95 | 1 |
3 | C | 45.75 | 1.55 | 0 | 56.3 | 2 | 2 | 4 | 7 | 8 | 8 | 3.5 | 7 | 6.55 | 8 |
3 | D | 4.95 | 2.01 | 42.9 | 68.8 | 1 | 3 | 8 | 1 | 5 | 6.5 | 7 | 3.5 | 5.7 | 7 |
3 | E | 53.80 | 1.57 | 14.3 | 75 | 2 | 3 | 3 | 6 | 6 | 3 | 3.5 | 3.5 | 4 | 4 |
3 | F | 34.80 | 1.30 | 7.1 | 75 | 2 | 3 | 5 | 8 | 7 | 3 | 3.5 | 3.5 | 4.8 | 6 |
3 | G | 268.25 | 1.80 | 92.9 | 68.8 | 3 | 1 | 1 | 2 | 2.5 | 6.5 | 1 | 8 | 3.75 | 2 |
3 | H | 24.40 | 1.73 | 71.4 | 75 | 1 | 3 | 6 | 5 | 4 | 3 | 7 | 3.5 | 4.45 | 5 |
4 | A | 11.60 | 1.85 | 100 | 60 | 2 | 3 | 6 | 2 | 1.5 | 1.5 | 3.5 | 3.5 | 2.85 | 1 |
4 | B | 28.30 | 1.69 | 50 | 40 | 1 | 3 | 5 | 4 | 3.5 | 5.5 | 7 | 3.5 | 4.8 | 5 |
4 | C | 129.50 | 1.43 | 0 | 40 | 2 | 2 | 2 | 7 | 7 | 5.5 | 3.5 | 7 | 5.2 | 6 |
4 | D | 4.30 | 1.97 | 25 | 40 | 1 | 3 | 8 | 1 | 5 | 5.5 | 7 | 3.5 | 5.4 | 7 |
4 | E | 83.95 | 1.55 | 0 | 60 | 2 | 3 | 3 | 6 | 7 | 1.5 | 3.5 | 3.5 | 3.75 | 3 |
4 | F | 8.65 | 1.23 | 0 | 40 | 2 | 3 | 7 | 8 | 7 | 5.5 | 3.5 | 3.5 | 5.95 | 8 |
4 | G | 462.05 | 1.81 | 100 | 40 | 3 | 1 | 1 | 3 | 1.5 | 5.5 | 1 | 8 | 3.35 | 2 |
4 | H | 55.00 | 1.62 | 50 | 40 | 1 | 3 | 4 | 5 | 3.5 | 5.5 | 7 | 3.5 | 4.7 | 4 |
Extraction Method | Expected Bands | Detected Bands | % |
---|---|---|---|
A | 45 | 38 | 84.4 |
B | 45 | 38 | 84.4 |
C | 45 | 30 | 66.7 |
D | 45 | 36 | 80.0 |
E | 45 | 38 | 84.4 |
F | 45 | 36 | 80.0 |
G | 45 | 29 | 64.4 |
H | 45 | 36 | 80.0 |
Total | 360 | 281 | 78.1 |
No. | Chicken (%) | Pork Loin (%) | Pork Belly (%) | Pork Backfat (%) | Beef (%) | Processing Type | Group |
---|---|---|---|---|---|---|---|
1 | 0 | 100 | 0 | 0 | 0 | raw | 1 |
2 | 0 | 100 | 0 | 0 | 0 | 70 °C/10 min | 2 |
3 | 0 | 100 | 0 | 0 | 0 | 100 °C/10 min | 2 |
4 | 0 | 100 | 0 | 0 | 0 | 121.1 °C/10 min | 2 |
5 | 90 | 10 | 0 | 0 | 0 | raw | 1 |
6 | 90 | 10 | 0 | 0 | 0 | 70 °C/10 min | 2 |
7 | 90 | 10 | 0 | 0 | 0 | 100 °C/10 min | 2 |
8 | 90 | 10 | 0 | 0 | 0 | 121.1 °C/10 min | 2 |
9 | 0 | 0 | 100 | 0 | 0 | raw | 1 |
10 | 0 | 0 | 100 | 0 | 0 | 70 °C/10 min | 2 |
11 | 0 | 0 | 100 | 0 | 0 | 100 °C/10 min | 2 |
12 | 0 | 0 | 100 | 0 | 0 | 121.1 °C/10 min | 2 |
13 | 90 | 0 | 10 | 0 | 0 | raw | 1 |
14 | 90 | 0 | 10 | 0 | 0 | 70 °C/10 min | 2 |
15 | 90 | 0 | 10 | 0 | 0 | 100 °C/10 min | 2 |
16 | 90 | 0 | 10 | 0 | 0 | 121.1 °C/10 min | 2 |
17 | 12 | 50 | 0 | 10 | 28 | Vienna sausage-like (type 1) | 3 |
18 | 31 | 31 | 0 | 10 | 28 | Vienna sausage-like (type 2) | 3 |
19 | 50 | 12 | 0 | 10 | 28 | Vienna sausage-like (type 3) | 3 |
20 | 0 | 20 | 0 | 80 | 0 | Teewurst (type 1) | 3 |
21 | 0 | 40 | 0 | 60 | 0 | Teewurst (type 2) | 3 |
22 | 0 | 38 | 0 | 33 | 29 | Fermented sausage (type 1) | 3 |
23 | 8 | 32 | 0 | 30 | 30 | Fermented sausage (type 2) | 3 |
24 | + | + | nd * | nd | - | Pet food (granules) | 4 |
25 | 43 | 35 | nd | nd | 20 | Pet food (canned) | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piskata, Z.; Servusova, E.; Babak, V.; Nesvadbova, M.; Borilova, G. The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures. Molecules 2019, 24, 1188. https://doi.org/10.3390/molecules24061188
Piskata Z, Servusova E, Babak V, Nesvadbova M, Borilova G. The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures. Molecules. 2019; 24(6):1188. https://doi.org/10.3390/molecules24061188
Chicago/Turabian StylePiskata, Zora, Eliska Servusova, Vladimir Babak, Michaela Nesvadbova, and Gabriela Borilova. 2019. "The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures" Molecules 24, no. 6: 1188. https://doi.org/10.3390/molecules24061188
APA StylePiskata, Z., Servusova, E., Babak, V., Nesvadbova, M., & Borilova, G. (2019). The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures. Molecules, 24(6), 1188. https://doi.org/10.3390/molecules24061188