CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge
Abstract
:1. Introduction
2. CRISPR/Cas9-Mediated Antiviral Strategy
3. Current Status of CRISPR/Cas9-Mediated Antiviral Strategy
3.1. HIV
3.1.1. Direct Disruption of an HIV Genome
3.1.2. Induction of Latency Reversal (Shock and Kill Strategy)
3.1.3. Disruption of a Host Dependency Factor
3.1.4. Induction of a Host Restriction Factor
3.1.5. Generation of the Viral Escape Mutant and the Development of Resistance
3.2. HBV
3.3. Herpes Viruses
3.3.1. HSV-1
3.3.2. EBV
3.3.3. Human Cytomegalovirus (HCMV)
3.3.4. Viral Escape and Resistance
3.4. HPV
3.5. Polyoma JC Virus
3.6. African Swine Fever Virus
3.7. Pseudorabies Virus
3.8. Hepatitis C Virus
4. Potential Challenges for CRISPR/Cas-Based Antiviral Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carr, A. Toxicity of antiretroviral therapy and implications for drug development. Nat. Rev. Drug Discov. 2003, 2, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Bella, R.; Kaminski, R.; Mancuso, P.; Young, W.B.; Chen, C.; Sariyer, R.; Fischer, T.; Amini, S.; Ferrante, P.; Jacobson, J.M.; et al. Removal of HIV DNA by CRISPR from patient blood engrafts in humanized mice. Mol. Ther. Nucleic Acids 2018, 12, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 2013, 3, 2510. [Google Scholar] [CrossRef]
- Hu, W.; Kaminski, R.; Yang, F.; Zhang, Y.; Cosentino, L.; Li, F.; Luo, B.; Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Karn, J.; et al. Rna-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 2014, 111, 11461–11466. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.; Bella, R.; Yin, C.; Otte, J.; Ferrante, P.; Gendelman, H.E.; Li, H.; Booze, R.; Gordon, J.; Hu, W.; et al. Excision of HIV-1 DNA by gene editing: A proof-of-concept in vivo study. Gene Ther. 2016, 23, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.; Chen, Y.; Fischer, T.; Tedaldi, E.; Napoli, A.; Zhang, Y.; Karn, J.; Hu, W.; Khalili, K. Elimination of HIV-1 genomes from human t-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 2016, 6, 22555. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.; Chen, Y.; Salkind, J.; Bella, R.; Young, W.B.; Ferrante, P.; Karn, J.; Malcolm, T.; Hu, W.; Khalili, K. Negative feedback regulation of HIV-1 by gene editing strategy. Sci. Rep. 2016, 6, 31527. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.K.; Gu, Y.; Diaz, A.; Marlett, J.; Takahashi, Y.; Li, M.; Suzuki, K.; Xu, R.; Hishida, T.; Chang, C.J.; et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 2015, 6, 6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, S.; Liu, Z.; Ke, Z.; Li, C.; Yu, X.; Chen, S.; Guo, D. Genome-scale screening identification of saCas9/grnas for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res. 2018, 250, 21–30. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Li, F.; Yang, F.; Putatunda, R.; Young, W.B.; Khalili, K.; Hu, W.; Zhang, Y. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of aids. AIDS 2016, 30, 1163–1174. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Qu, X.; Zhang, Y.; Putatunda, R.; Xiao, X.; Li, F.; Xiao, W.; Zhao, H.; Dai, S.; et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol. Ther. 2017, 25, 1168–1186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Lei, R.; Le Duff, Y.; Li, J.; Guo, F.; Wainberg, M.A.; Liang, C. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 2015, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Kim, S.; Kim, J.M.; Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Cradick, T.J.; Fine, E.J.; Antico, C.J.; Bao, G. CRISPR/Cas9 systems targeting beta-globin and ccr5 genes have substantial off-target activity. Nucleic Acids Res. 2013, 41, 9584–9592. [Google Scholar] [CrossRef]
- Hou, P.; Chen, S.; Wang, S.; Yu, X.; Chen, Y.; Jiang, M.; Zhuang, K.; Ho, W.; Hou, W.; Huang, J.; et al. Genome editing of cxcr4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 2015, 5, 15577. [Google Scholar] [CrossRef] [PubMed]
- Hultquist, J.F.; Schumann, K.; Woo, J.M.; Manganaro, L.; McGregor, M.J.; Doudna, J.; Simon, V.; Krogan, N.J.; Marson, A. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human t cells. Cell Rep. 2016, 17, 1438–1452. [Google Scholar] [CrossRef]
- Li, C.; Guan, X.; Du, T.; Jin, W.; Wu, B.; Liu, Y.; Wang, P.; Hu, B.; Griffin, G.E.; Shattock, R.J.; et al. Inhibition of HIV-1 infection of primary cd4+ t-cells by gene editing of ccr5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 2015, 96, 2381–2393. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Q.; Yu, X.; Li, Y.; Guo, Y.; Liu, Z.; Sun, F.; Hou, W.; Li, C.; Wu, L.; et al. Hiv-1 inhibition in cells with cxcr4 mutant genome created by CRISPR-Cas9 and piggybac recombinant technologies. Sci. Rep. 2018, 8, 8573. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, S.; Jin, X.; Wang, Q.; Yang, K.; Li, C.; Xiao, Q.; Hou, P.; Liu, S.; Wu, S.; et al. Genome editing of the HIV co-receptors ccr5 and cxcr4 by CRISPR-Cas9 protects cd4(+) t cells from HIV-1 infection. Cell Biosci. 2017, 7, 47. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Xiao, Q.; Liu, Z.; Liu, S.; Hou, P.; Zhou, L.; Hou, W.; Ho, W.; Li, C.; et al. Genome modification of cxcr4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology 2017, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, C.; Liu, J.; Zhang, D.; Kimata, J.T.; Zhou, P. Ccr5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS ONE 2014, 9, e115987. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, H.; Gao, Y.; Chen, Z.; Xie, L.; Liu, Y.; Liu, Y.; Wang, X.; Li, H.; Lai, W.; et al. CRISPR/Cas9-mediated ccr5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol. Ther. 2017, 25, 1782–1789. [Google Scholar] [CrossRef]
- Ye, L.; Wang, J.; Beyer, A.I.; Teque, F.; Cradick, T.J.; Qi, Z.; Chang, J.C.; Bao, G.; Muench, M.O.; Yu, J.; et al. Seamless modification of wild-type induced pluripotent stem cells to the natural ccr5delta32 mutation confers resistance to HIV infection. Proc. Natl. Acad. Sci. USA 2014, 111, 9591–9596. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yao, Y.; Xiao, H.; Li, J.; Liu, Q.; Yang, Y.; Adah, D.; Lu, J.; Zhao, S.; Qin, L.; et al. Simultaneous knockout of cxcr4 and ccr5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both x4- and r5-tropic human immunodeficiency virus type 1 infection. Hum. Gene Ther. 2018, 29, 51–67. [Google Scholar] [CrossRef]
- Khalili, K.; Kaminski, R.; Gordon, J.; Cosentino, L.; Hu, W. Genome editing strategies: Potential tools for eradicating HIV-1/aids. J. Neurovirol. 2015, 21, 310–321. [Google Scholar] [CrossRef]
- Darcis, G.; Das, A.T.; Berkhout, B. Tackling HIV persistence: Pharmacological versus CRISPR-based shock strategies. Viruses 2018, 10, 157. [Google Scholar] [CrossRef]
- Bialek, J.K.; Dunay, G.A.; Voges, M.; Schafer, C.; Spohn, M.; Stucka, R.; Hauber, J.; Lange, U.C. Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PLoS ONE 2016, 11, e0158294. [Google Scholar] [CrossRef] [PubMed]
- Limsirichai, P.; Gaj, T.; Schaffer, D.V. CRISPR-mediated activation of latent HIV-1 expression. Mol. Ther. 2016, 24, 499–507. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, C.; Zhang, T.; Li, F.; Yang, W.; Kaminski, R.; Fagan, P.R.; Putatunda, R.; Young, W.B.; Khalili, K.; et al. CRISPR/gRNA-directed synergistic activation mediator (sam) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci. Rep. 2015, 5, 16277. [Google Scholar] [CrossRef]
- Ji, H.; Jiang, Z.; Lu, P.; Ma, L.; Li, C.; Pan, H.; Fu, Z.; Qu, X.; Wang, P.; Deng, J.; et al. Specific reactivation of latent HIV-1 by dCas9-Suntag-vp64-mediated guide RNA targeting the HIV-1 promoter. Mol. Ther. 2016, 24, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Saayman, S.M.; Lazar, D.C.; Scott, T.A.; Hart, J.R.; Takahashi, M.; Burnett, J.C.; Planelles, V.; Morris, K.V.; Weinberg, M.S. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol. Ther. 2016, 24, 488–498. [Google Scholar] [CrossRef]
- Bogerd, H.P.; Kornepati, A.V.; Marshall, J.B.; Kennedy, E.M.; Cullen, B.R. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc. Natl. Acad. Sci. USA 2015, 112, E7249–E7256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, C.; Claudel, A.; Joubarne, N.; Merindol, N.; Maisonnet, T.; Masroori, N.; Plourde, M.B.; Berthoux, L. Editing of the human trim5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS ONE 2018, 13, e0191709. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Luo, M.; Yu, T.; Chen, L.; Huang, Q.; Chen, S.; Xie, L.; Zeng, Y.; Luo, F.; Xiong, H.; et al. CRISPR/Cas9-mediated deletion of mir-146a enhances antiviral response in HIV-1 infected cells. Genes Immun. 2018. [Google Scholar] [CrossRef]
- Ueda, S.; Ebina, H.; Kanemura, Y.; Misawa, N.; Koyanagi, Y. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol. Immunol. 2016, 60, 483–496. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, N.; Berkhout, B.; Das, A.T. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol. Ther. 2016, 24, 522–526. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, N.; Berkhout, B.; Das, A.T. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected t cell cultures. Cell Rep. 2016, 17, 2819–2826. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Q.; Gendron, P.; Zhu, W.; Guo, F.; Cen, S.; Wainberg, M.A.; Liang, C. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016, 15, 481–489. [Google Scholar] [CrossRef]
- Yoder, K.E.; Bundschuh, R. Host double-strand break repair generates HIV-1 strains resistant to CRISPR/Cas9. Sci. Rep. 2016, 6, 29530. [Google Scholar] [CrossRef]
- Lebbink, R.J.; de Jong, D.C.; Wolters, F.; Kruse, E.M.; van Ham, P.M.; Wiertz, E.J.; Nijhuis, M. A combinational CRISPR/cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci. Rep. 2017, 7, 41968. [Google Scholar] [CrossRef] [PubMed]
- Mefferd, A.L.; Bogerd, H.P.; Irwan, I.D.; Cullen, B.R. Insights into the mechanisms underlying the inactivation of HIV-1 proviruses by CRISPR/Cas. Virology 2018, 520, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.R. Role and mechanism of action of the apobec3 family of antiretroviral resistance factors. J. Virol. 2006, 80, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Doehle, B.P.; Schafer, A.; Cullen, B.R. Human apobec3b is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 vif. Virology 2005, 339, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Stremlau, M.; Lee, M.; Sodroski, J. Removal of arginine 332 allows human trim5alpha to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 2006, 80, 6738–6744. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.L.; Wu, L.I.; Emerman, M.; Malik, H.S. Positive selection of primate trim5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. USA 2005, 102, 2832–2837. [Google Scholar] [CrossRef]
- Jung, U.; Urak, K.; Veillette, M.; Nepveu-Traversy, M.E.; Pham, Q.T.; Hamel, S.; Rossi, J.J.; Berthoux, L. Preclinical assessment of mutant human trim5alpha as an anti-HIV-1 transgene. Hum. Gene Ther. 2015, 26, 664–679. [Google Scholar] [CrossRef]
- Lee, W.M. Hepatitis b virus infection. N. Engl. J. Med. 1997, 337, 1733–1745. [Google Scholar] [CrossRef]
- Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis b virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012, 30, 2212–2219. [Google Scholar] [CrossRef]
- Block, T.M.; Rawat, S.; Brosgart, C.L. Chronic hepatitis b: A wave of new therapies on the horizon. Antiviral Res. 2015, 121, 69–81. [Google Scholar] [CrossRef]
- Shlomai, A.; Rice, C.M. Virology. Getting rid of a persistent troublemaker to cure hepatitis. Science 2014, 343, 1212–1213. [Google Scholar] [CrossRef] [PubMed]
- Schinazi, R.F.; Ehteshami, M.; Bassit, L.; Asselah, T. Towards HBV curative therapies. Liver Int. 2018, 38 (Suppl. 1), 102–114. [Google Scholar] [CrossRef] [Green Version]
- Bloom, K.; Maepa, M.B.; Ely, A.; Arbuthnot, P. Gene therapy for chronic HBV-can we eliminate cccDNA? Genes (Basel) 2018, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Pankowicz, F.P.; Jarrett, K.E.; Lagor, W.R.; Bissig, K.D. CRISPR/Cas9: At the cutting edge of hepatology. Gut 2017, 66, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Lu, M.; Yang, D. CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV. Virol. Sin. 2015, 30, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Zhang, K.; Li, J. Application of CRISPR/Cas9 technology to HBV. Int. J. Mol. Sci. 2015, 16, 26077–26086. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Chen, P.J. The potential and challenges of CRISPR-Cas in eradication of hepatitis b virus covalently closed circular DNA. Virus Res. 2018, 244, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Bloom, K.; Scott, T.; Ely, A.; Arbuthnot, P. Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis b virus and hepatitis c virus. Virus Res. 2018, 244, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Ely, A.; Moyo, B.; Arbuthnot, P. Progress with developing use of gene editing to cure chronic infection with hepatitis b virus. Mol. Ther. 2016, 24, 671–677. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Kornepati, A.V.; Cullen, B.R. Targeting hepatitis b virus cccDNA using CRISPR/Cas9. Antiviral Res. 2015, 123, 188–192. [Google Scholar] [CrossRef]
- Lin, S.R.; Yang, H.C.; Kuo, Y.T.; Liu, C.J.; Yang, T.Y.; Sung, K.C.; Lin, Y.Y.; Wang, H.Y.; Wang, C.C.; Shen, Y.C.; et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 2014, 3, e186. [Google Scholar] [CrossRef] [PubMed]
- Seeger, C.; Sohn, J.A. Targeting hepatitis b virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 2014, 3, e216. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Qu, L.; Wang, H.; Wei, L.; Dong, Y.; Xiong, S. Targeting hepatitis b virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015, 118, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Karimova, M.; Beschorner, N.; Dammermann, W.; Chemnitz, J.; Indenbirken, D.; Bockmann, J.H.; Grundhoff, A.; Luth, S.; Buchholz, F.; Schulze zur Wiesch, J.; et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis b virus open reading frame S and X. Sci. Rep. 2015, 5, 13734. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.M.; Bassit, L.C.; Mueller, H.; Kornepati, A.V.R.; Bogerd, H.P.; Nie, T.; Chatterjee, P.; Javanbakht, H.; Schinazi, R.F.; Cullen, B.R. Suppression of hepatitis b virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 2015, 476, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, R.; Chen, S.; Guo, D.; Chen, Y. Inhibition of hepatitis b virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J. Gen. Virol. 2015, 96, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, V.; Shlomai, A.; Cox, D.B.; Schwartz, R.E.; Michailidis, E.; Bhatta, A.; Scott, D.A.; Zhang, F.; Rice, C.M.; Bhatia, S.N. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis b virus. Sci. Rep. 2015, 5, 10833. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Z.W.; Liu, S.; Zhang, R.Y.; Ding, S.L.; Xie, X.M.; Long, L.; Chen, X.M.; Zhuang, H.; Lu, F.M. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis b virus replication. World J. Gastroenterol. 2015, 21, 9554–9565. [Google Scholar] [CrossRef]
- Zhen, S.; Hua, L.; Liu, Y.H.; Gao, L.C.; Fu, J.; Wan, D.Y.; Dong, L.H.; Song, H.F.; Gao, X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/crispr-associated Cas9 system to disrupt the hepatitis b virus. Gene Ther. 2015, 22, 404–412. [Google Scholar] [CrossRef]
- Sakuma, T.; Masaki, K.; Abe-Chayama, H.; Mochida, K.; Yamamoto, T.; Chayama, K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis b virus. Genes Cells 2016, 21, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Seeger, C.; Sohn, J.A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 2016, 24, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Xie, K.; Xu, Y.; Wang, L.; Chen, K.; Zhang, L.; Fang, J. CRISPR/Cas9 produces anti-hepatitis b virus effect in hepatoma cells and transgenic mouse. Virus Res. 2016, 217, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Mei, M.; Li, B.; Zhu, X.; Zu, W.; Tian, Y.; Wang, Q.; Guo, Y.; Dong, Y.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Sheng, C.; Wang, S.; Yang, L.; Liang, Y.; Huang, Y.; Liu, H.; Li, P.; Yang, C.; Yang, X.; et al. Removal of integrated hepatitis b virus DNA using CRISPR-Cas9. Front. Cell. Infect. Microbiol. 2017, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.; Moyo, B.; Nicholson, S.; Maepa, M.B.; Watashi, K.; Ely, A.; Weinberg, M.S.; Arbuthnot, P. Ssaavs containing cassettes encoding saCas9 and guides targeting hepatitis b virus inactivate replication of the virus in cultured cells. Sci. Rep. 2017, 7, 7401. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, R.; Zhang, R.; Ding, S.; Zhang, T.; Yuan, Q.; Guan, G.; Chen, X.; Zhang, T.; Zhuang, H.; et al. The gRNA-miRNA-gRNA ternary cassette combining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis b virus replication. Theranostics 2017, 7, 3090–3105. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, M.; Gong, M.; Xu, Y.; Xie, C.; Deng, H.; Li, X.; Wu, H.; Wang, Z. Inhibition of hepatitis b virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Res. 2018, 152, 58–67. [Google Scholar] [CrossRef]
- Schiwon, M.; Ehrke-Schulz, E.; Oswald, A.; Bergmann, T.; Michler, T.; Protzer, U.; Ehrhardt, A. One-vector system for multiplexed CRISPR/Cas9 against hepatitis b virus cccDNA utilizing high-capacity adenoviral vectors. Mol. Ther. Nucleic Acids 2018, 12, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, X.; Ge, Q.; Yuan, C.; Chu, L.; Liang, H.F.; Liao, Z.; Liu, Q.; Zhang, Z.; Zhang, B. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J. Cell. Biochem. 2018, 119, 8419–8431. [Google Scholar] [CrossRef]
- Mali, P.; Aach, J.; Stranges, P.B.; Esvelt, K.M.; Moosburner, M.; Kosuri, S.; Yang, L.; Church, G.M. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31, 833–838. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Schillinger, J.A.; Sternberg, M.R.; Johnson, R.E.; Lee, F.K.; Nahmias, A.J.; Markowitz, L.E. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the united states, 1988-1994. J. Infect. Dis. 2002, 185, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Griffin, B.D.; Verweij, M.C.; Wiertz, E.J. Herpesviruses and immunity: The art of evasion. Vet. Microbiol. 2010, 143, 89–100. [Google Scholar] [CrossRef] [PubMed]
- van Diemen, F.R.; Lebbink, R.J. CRISPR/Cas9, a powerful tool to target human herpesviruses. Cell. Microbiol. 2017, 19. [Google Scholar] [CrossRef] [PubMed]
- Coen, D.M.; Schaffer, P.A. Antiherpesvirus drugs: A promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2003, 2, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, B.D.; Atashband, S.; Kozak, F.K. A systematic review of the incidence of sensorineural hearing loss in neonates exposed to herpes simplex virus (HSV). Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R.J.; Roizman, B. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef]
- Xu, X.; Fan, S.; Zhou, J.; Zhang, Y.; Che, Y.; Cai, H.; Wang, L.; Guo, L.; Liu, L.; Li, Q. The mutated tegument protein ul7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of alpha-4 gene transcription. Virol. J. 2016, 13, 152. [Google Scholar] [CrossRef]
- Roehm, P.C.; Shekarabi, M.; Wollebo, H.S.; Bellizzi, A.; He, L.; Salkind, J.; Khalili, K. Inhibition of HSV-1 replication by gene editing strategy. Sci. Rep. 2016, 6, 23146. [Google Scholar] [CrossRef]
- Raab-Traub, N. Novel mechanisms of EBV-induced oncogenesis. Curr. Opin. Virol. 2012, 2, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Quake, S.R. Rna-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl. Acad. Sci. USA 2014, 111, 13157–13162. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.S.; Chan, C.P.; Wong, N.H.; Ho, C.H.; Ho, T.H.; Lei, T.; Deng, W.; Tsao, S.W.; Chen, H.; Kok, K.H.; et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J. Gen. Virol. 2015, 96, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.S.; Wang, Z.M.; Wong, N.M.; Zhang, Z.Q.; Cheng, T.F.; Lui, W.Y.; Chan, C.P.; Jin, D.Y. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Res. 2018, 244, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Boeckh, M.; Geballe, A.P. Cytomegalovirus: Pathogen, paradigm, and puzzle. J. Clin. Investig. 2011, 121, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Gergen, J.; Coulon, F.; Creneguy, A.; Elain-Duret, N.; Gutierrez, A.; Pinkenburg, O.; Verhoeyen, E.; Anegon, I.; Nguyen, T.H.; Halary, F.A.; et al. Multiplex CRISPR/Cas9 system impairs HCV replication by excising an essential viral gene. PLoS ONE 2018, 13, e0192602. [Google Scholar] [CrossRef] [PubMed]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schurch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yu, L.; Zhu, D.; Ding, W.; Wang, X.; Zhang, C.; Wang, L.; Jiang, X.; Shen, H.; He, D.; et al. Disruption of hpv16-e7 by CRISPR/Cas system induces apoptosis and growth inhibition in hpv16 positive human cervical cancer cells. Biomed. Res. Int. 2014, 2014, 612823. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.M.; Kornepati, A.V.; Goldstein, M.; Bogerd, H.P.; Poling, B.C.; Whisnant, A.W.; Kastan, M.B.; Cullen, B.R. Inactivation of the human papillomavirus e6 or e7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 2014, 88, 11965–11972. [Google Scholar] [CrossRef]
- Zhen, S.; Hua, L.; Takahashi, Y.; Narita, S.; Liu, Y.H.; Li, Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 2014, 450, 1422–1426. [Google Scholar] [CrossRef]
- Liu, Y.C.; Cai, Z.M.; Zhang, X.J. Reprogrammed CRISPR-Cas9 targeting the conserved regions of hpv6/11 e7 genes inhibits proliferation and induces apoptosis in e7-transformed keratinocytes. Asian J. Androl. 2016, 18, 475–479. [Google Scholar]
- Zhen, S.; Lu, J.J.; Wang, L.J.; Sun, X.M.; Zhang, J.Q.; Li, X.; Luo, W.J.; Zhao, L. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 e6/e7 CRISPR/Cas9 on cervical cancer cell line. Transl. Oncol. 2016, 9, 498–504. [Google Scholar] [CrossRef]
- Yu, L.; Hu, Z.; Gao, C.; Feng, B.; Wang, L.; Tian, X.; Ding, W.; Jin, X.; Ma, D.; Wang, H. Deletion of hpv18 e6 and e7 genes using dual sgRNA-directed CRISPRCas9 inhibits growth of cervical cancer cells. Int. J. Clin. Exp. Med. 2017, 10, 9206. [Google Scholar]
- Hsu, D.S.; Kornepati, A.V.; Glover, W.; Kennedy, E.M.; Cullen, B.R. Targeting hpv16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Future Virol. 2018, 13, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R. The clinical features of PML. Cleve Clin. J. Med. 2011, 78 (Suppl. 2), S8–12. [Google Scholar] [CrossRef]
- Wollebo, H.S.; Bellizzi, A.; Kaminski, R.; Hu, W.; White, M.K.; Khalili, K. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS ONE 2015, 10, e0136046. [Google Scholar] [CrossRef] [PubMed]
- Guinat, C.; Gogin, A.; Blome, S.; Keil, G.; Pollin, R.; Pfeiffer, D.U.; Dixon, L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Rec. 2016, 178, 262–267. [Google Scholar] [CrossRef]
- Hubner, A.; Petersen, B.; Keil, G.M.; Niemann, H.; Mettenleiter, T.C.; Fuchs, W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (cp204l). Sci. Rep. 2018, 8, 1449. [Google Scholar] [CrossRef] [PubMed]
- Mettenleiter, T.C. Molecular biology of pseudorabies (aujeszky’s disease) virus. Comp. Immunol. Microbiol. Infect. Dis. 1991, 14, 151–163. [Google Scholar] [CrossRef]
- Peng, Z.; Ouyang, T.; Pang, D.; Ma, T.; Chen, X.; Guo, N.; Chen, F.; Yuan, L.; Ouyang, H.; Ren, L. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res. 2016, 223, 197–205. [Google Scholar] [CrossRef]
- Tang, Y.D.; Liu, J.T.; Wang, T.Y.; Sun, M.X.; Tian, Z.J.; Cai, X.H. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication. Arch. Virol. 2017, 162, 3881–3886. [Google Scholar] [CrossRef]
- Shepard, C.W.; Finelli, L.; Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 2005, 5, 558–567. [Google Scholar] [CrossRef]
- Sampson, T.R.; Saroj, S.D.; Llewellyn, A.C.; Tzeng, Y.L.; Weiss, D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 2013, 497, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Price, A.A.; Sampson, T.R.; Ratner, H.K.; Grakoui, A.; Weiss, D.S. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc. Natl. Acad. Sci. USA 2015, 112, 6164–6169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016, 351, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR-cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef]
- Kotterman, M.A.; Schaffer, D.V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hu, S.; Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018, 171, 207–218. [Google Scholar] [CrossRef]
Mechanism of Action | CRISPR/Cas System | Delivery | gRNA Target | Virus Study Model | Cell or Animal | Effect on Virus | Effect on Host | Reference |
---|---|---|---|---|---|---|---|---|
Direct disruption of an HIV genome | CRISPR/Cas9 | Transfection | LTR | Pseudotyped LTIG HIV-1 with LTR-driven GFP expression and latently integrated provirus | HEK293T, HeLa, and Jurkat c5 and c19 cells | GFP expression↓, latency reactivation by TNF-α or 5-Aza-dC/TSA↓, excision of provirus | No off-target cleavage | [3] |
CRISPR/Cas9 | Transfection | LTR U3 | Latently Integrated provirus with LTR-driven GFP and luciferase expression | CHME5 microglial, HeLa-derived TZM-bI, U-937 U1 monocyte, and J-Lat T cells | GFP expression↓, latency reactivation by TSA↓, viral load↓, p24↓, excision of provirus, immunization against new infection | No effects on cell viability, no off-target cleavage | [4] | |
CRISPR/Cas9 | Transfection | Gag, env, pol, vif, rev, LTR | Lentivirus with a target gRNA sequence, latently Integrated provirus with LTR-driven GFP expression | HEK293T cells, primary human T cells, human pluripotent stem cell-derived macrophages and monocytes | Disruption of integrated lentivirus, GFP expression↓, p24↓, LTR-targeting gRNA LTR worked best, immunization against new infection | Cell viability↑, no off-target cleavage | [8] | |
CRISPR/Cas9 | Transfection | LTR, pol, and tet/rev | Latently integrated provirus with LTR-driven GFP expression | HIV-GFP Jurkat cell line called JLat10.6 cells | GFP expression↓, p24↓, tet/rev-targeting gRNA worked best | H3K9me2 histone modification↑ | [12] | |
CRISPR/saCas9 | rAAV9 transduction | LTR and gag | HIV-1NL4–3 with a deletion of a 3.1 kb spanning the C-terminal of the Gag and the N-terminal of the Pol genes | HIV-1 Tg26 transgenic mice, rat, mouse embryonic fibroblasts, circulating rat lymphocytes | Viral RNA load in blood↓ | N/A | [5] | |
CRISPR/Cas9 | Transfection and LV transduction | LTR U3 | Latently Integrated provirus with LTR-driven GFP expression, HIV-1JRFL or PNL4-3 | Human T-lymphoid cell line, 2D10, primary T cell, and patient-derived PBMC | GFP expression↓, latency reactivation by TSA and PMA↓, viral copy number↓, p24↓, excision of provirus, no reintegration, Immunization against new infection | No off-target cleavage, no effects on cell viability, cell cycle progression and apoptosis, and host gene expression | [6] | |
Tat-inducible CRISPR/Cas9 | Transfection and LV transduction | LTR | Latently Integrated provirus with LTR-driven GFP and luciferase expression | TZM-bl cells and human T-lymphocytic cells line, 2D10, Jurkat T-cells, human primary cultures of microglia and astrocytes | Expression of Tat by PMA and TSA, luciferase expression↓, GFP↓, viral load↓, excision of provirus, immunization against new infections | No cytotoxicity | [7] | |
CRISPR/saCas9 | LV transduction | LTR and gag/pol | EcoHIV-firefly luciferase reporter | HEK293 T cells | Luciferase expression↓, excision of provirus | N/A | [10] | |
CRISPR/saCas9 | LV and AAV transduction | LTR and gag/pol | EcoHIV-eLuc reporter | HEK293T cells, humanized bone marrow/liver/thymus (BLT) mice, HIV-1 Tg26 transgenic mice, neural stem and progenitor cells | Viral RNA load↓, Tat protein↓, luciferase expression↓, excision of provirus | No off-target cleavage, no AAV toxicity | [11] | |
CRISPR/saCas9 | LV transduction | LTR | HIV-1JR-FL | The in-vitro-infected PBMCs from HIV-1-positive patients embedded in the spleens of NRG and NOD/SCID mice and TZM-bl cells | Viral DNA and RNA load↓, p24↓ | N/A | [2] | |
CRISPR/saCas9 | LV transduction | LTR and structural genes | HIV-1-expressing plasmid pNL4-3, latently Integrated provirus with LTR-driven GFP and luciferase | HEK293T, Jurkat C11, and TZM-bl cells | p24↓, GFP expression↓, luciferase expression↓, latency reactivation by SAHA↓, immunization against new infection | No off-target cleavage | [9] | |
Induction of latency reversal | dCas9-MS2-p65-HSF1-SAM | LV transduction | LTR | EcoHIV firefly-luciferase (eLuc) reporter, latently Integrated provirus with LTR-driven GFP | TZM-bI cell line, HEK293 T cells, HIV-1 latent T cell lines, CHME5 microglial cells, Jurkat-derived 2D10, and E4 cells | Luciferase expression↑, GFP expression↑, toxic viral proteins↑ | Suicidal cell death in 2D10 and CHME5 cells | [30] |
dCas9-SunTag and dCad9-SAM | Transfection | LTR | HIV LTR-dependent luciferase reporter | HeLa cell-derived clonal TZM-bl cells, Jurkat-derived clonal JLat6.3 cells, Jurkat cell-derived HIV is cell line (HIVisB2), Jurkat-derived clonal J89 cells, MOLT-4/CCR5 cells | Luciferase expression↑, GFP expression↑, p24↑, infectious particles↑ | N/A | [28] | |
dCas9-SunTag-VP64 | Transfection | LTR | LTR-luc, TZM-bl cells, a HeLa cell line integrated with a luciferase reporter expression cassette driven by HIV-1 5′-LTR, Jurkat T-cell-based latency models C11 cells (Latently Integrated provirus with LTR-driven GFP) | HEK293T cells, ACH2 cells, Jurkat T cells, C11, A10.6 | GFP expression↑, luciferase↑, p24↑, binding of dCas9-SunTag-VP64 to LTR | No genotoxicity, global T cell activation, and cytotoxicity, no off-target cleavage | [31] | |
dCas9-VP64, MS2-p64-HSF1-SAM, p300 (HDAC) | Transfection, LV transduction | LTR | HIV-1 subtype B promoter upstream of an EGFP reporter gene | HEK293T cells, Jurkat-derived lymphocytic cell lines J-Lat 9.2 and J-Lat 10.6 cells | GFP expression↑, synergy with SAHA and prostratin | N/A | [29] | |
dCas9-MS2-p65-HSF1-SAM | Transfection | LTR | NL4-3.Luc.R-E-, a full-length HIV molecular clone where luciferase is driven by the viral LTR, LTRmCherry-IRES-Tat (LChIT) reporter | HEK293T cells, CEM T-cell, ACH2 cell, J-Lat cells | Luciferase expression↑, mCherry expression↑ | No adverse effects, independent of NF-kB | [32] | |
Disruption of a host dependency factor | CRISPR/Cas9 | Transfection | CCR5 | N/A | K562 cells | N/A | N/A | [13] |
CRISPR/Cas9 | Transfection | CCR5 | N/A | HEK 293T cells | N/A | Deletion of CCR5 and CCR2 genes | [15] | |
CRISPR/Cas9n | Transfection | CCR5 | N/A | K562 cells | N/A | No off-target mutations | ||
CRISPR/Cas9 | LV transduction | CCR5 | R5-trophic HIV-1 | TZM.bl and CEMss-CCR5 cells, pseudo-type viruses with luciferase, human CD4 T CEMss-CCR5 cells | Resistant to R5-trophic HIV-1 infection, luciferase expression↓ | CCR5 expression↓, no off-target mutations, selective survival advantage of CCR5-disrupted cells | [22] | |
CRISPR/Cas9 | Transfection | CCR5delta32 | CCR5-tropic virus isolate, HIV-1SF170 | iPSC differentiated into monocytes/macrophages | Resistant to R5-trophic HIV-1 infection | No off-target mutations | [24] | |
CRISPR/Cas9 | LV transduction | CXCR4 | HIV-1NL4-3, a CXCR4-tropic HIV-1 with GFP driven by LTR | Ghost-CXCR4 cells, Jurkat cells and primary human and Rhesus macaque CD4+ T cells, Jurkat T cells | GFP expression↓, p24↓, viral RNA load↓ | No genotoxicity or cytotoxicity, no off-target mutations | [16] | |
CRISPR/Cas9 | LV and adenovirus transduction | CCR5 | HIV-1 BaL (R5-tropic) infection, Transmitted/founder (T/F) HIV-1 strains, Ad6F53 adenovirus vector | TZM-bl cells, primary CD4+ T-cells | Resistant to R5-trophic HIV-1 infection, luciferase expression↓, p24↓ | No off-target mutations | [18] | |
CRISPR/Cas9 | Electroporation | CXCR4 and CCR5 | CXCR4-tropic HIV-1LAI expressing GFP | Primary CD4 T cells | GFP expression↓ | N/A | [17] | |
CRISPR/Cas9 | LV transduction and electroporation | CXCR4 and CCR5 | HIV-1NL4-3 strain (X4-tropic) and HIV-1YU-2 strain (R5-tropic) | TZM-bl cell line, Jurkat T cells, primary CD4+ T cells | Resistant to R5-and X4 tropic HIV-1 infection, luciferase↓, p24↓ | Selective advantage, no off-target mutations, no apoptosis difference | [20] | |
CRISPR/saCas9 | Transfection, LV and AAV transduction | CXCR4 | LTR-GFP reporter, X4-tropic HIV-1NL4-3, HIV-1NL4-3 | HEK293T cell and primary T cells, GHOST-X4 and TZM-bl cells, Jurkat T cells | Resistant to X4-trophic HIV-1 infection, GFP expression↓, p24↓, luciferase expression↓ | No effects on cell viability, no apoptosis difference, no off-target mutations | [21] | |
CRISPR/Cas9 | Transfection | CCR5 | Bal-1 virus (CCR5-tropic HIV-1 strain) | K562 cells, NOD/Prkdc-scid/IL-2Rγnull mice, CCR5-modified CD34+ hematopoietic stem/progenitor cells | Viral RNA load↓, resistant to R5-trophic HIV-1 infection | CCR5 ablation and reconstitution | [23] | |
CRISPR/Cas9 | Transfection | CXCR4-P191A | HIV LTR-dependent luciferase reporter, X4-tropic and R5-trophic HIV-1 strains | TZM-bl cells | Resistant to X4-trophic HIV-1 infection, viral RNA load↓, p24↓, luciferase expression↓ | No effects on cell viability, No off-target mutations | [19] | |
CRISPR/Cas9 | LV transduction | miR-146 | A latent infection cell model C11 | HEK293T cells, A549 cells, MT2 cells, a latent infection cell model C11 | Viral RNA load↓, p24↓, GFP expression by SAHA↓ | No off-target mutations, NF-kB↑, NF-kB-regulated cytokines↑, Type I IFN↑, ISG↑, PD-1 and CTLA-4↓ | [35] | |
CRISPR/Cas9 | LV transduction and electroporation | CXCR4 and CCR5 | CXCR4-tropic HIV-1NL4-3 and CCR5 tropic HIV-1YU 2 | GHOST (3) CXCR4+CCR5+ cells, primary human CD4+ cells, HeLa-CD4 cells | Resistant to X4-trophic and R5-trophic HIV-1 infection, p24↓ | No effects on cell viability, no apoptosis difference, no off-target mutations | [25] | |
Induction of a host restriction factor | CRISPR/dCas9-SAM | Transfection | APOBEC3G and APOBEC3B | HIV-1 provirus containing the FLuc indicator gene in place of nef (HIV-1WTΔVif) | HeLa cells, 293T cells, CD4+ T-cell line CEMSS | Luciferase expression↓, infectivity↓ | C2T mutation↑ | [33] |
CRISPR/Cas9 | Transfection | TRIM5αR332G and R355G | pHIV-1NL-GFP | 293T cell, THP-1 cells, Jurkat cells | No HIV-1 restriction activity | Undesired mutations | [34] | |
Viral escape and resistance | CRISPR/Cas9 | Transfection | LTR, gag, and pol | WT pNL4-3, NL-GFP, which is a VSV-G-pseudo-typed, GFP-expressing HIV-1, replication-competent WT HIV-1NL4-3 | ACH-2 cells, MT-4 cells | GFP expression↓, p24↓↑ | N/A | [36] |
CRISPR/Cas9 | Transfection | LTR and entire protein-coding sequence | HIV plasmids pLAI | 293T cells, SupT1 T cells | p24↓↑ | Large virus-induced syncytia and cell death, mutations in the target for all escape viruses | [37] | |
CRISPR/Cas9 | Transfection and LV transduction | LTR and protein-coding sequence | HIV-1 LAI | 293T cells | p24↓, no viral breakthrough | Large virus-induced syncytia and cell death | [38] | |
CRISPR/Cas9 | LV transduction | Gag/pol, env/rev, and LTR | NL4-3 HIV-1 strain, primary HIV-1 isolates 89.6 and YU-2, as well as three transmitted founder viruses CH040, CH077, and CH106 | CD4+ SupT1 cells | Viral particles↓, delayed RT activity↑ | N/A | [39] | |
CRISPR/Cas9 | LV transduction | TATA, TAR, RRE, env | HIV-1 strains NL4-3 and R7 | Human CD4+ T cell line SupT1 | p24↑ | No effect on cell growth, cell viability↓ | [40] | |
CRISPR/Cas9 | LV transduction | LTR, gag, and pol | LTR-GFP | J.Lat full-length clone 15.4, HIV-R7/E-/GFP | GFP expression↑↓, latency reactivation↓ | N/A | [41] | |
CRISPR/Cas9 | Transfection | Tat, TAR, gag | NL-NLuc-HXB | 293T cells, SupT1 cells | Luciferase expression↓, p24↓, resistance to a new infection | N/A | [42] |
CRISPR/Cas System | CRISPR/Cas Delivery | gRNA Target | Virus AStudy Model | Cell or Animal | Effect on Virus | Effect on Host | Reference |
---|---|---|---|---|---|---|---|
CRISPR/Cas9 | Transfection and HDI | PS, P1, XCp, eE, PCE, S1 | HBV-expression vector pAAV/HBV1.2, DHBV-expressing plasmid, HBV-expression vector | Huh7 cells, C57BL/6 mice | HBcAg↓, HBsAg↓ | N/A | [61] |
CRISPR/Cas9 | LV transduction | ENII-CP/X and Pre-C | HBV derived from the supernatant of HepAD38 cells | HepG2 cells expressing NTCP, HepAD38 | HBcAg↓ | N/A | [62] |
CRISPR/Cas9 | Transfection and HDI | X, C, P | pTHBV replication-competent plasmid, precccDNA, and pCre | Huh7 cells, HepG2.2.15 cells, BALB/c mice | HBsAg↓, HBeAg↓, cccDNA↓, HBcAg↓ | N/A | [63] |
CRISPR/Cas9nickase | Transfection | S and X | pRG-HBV double fluorescent reporter constructs | HeLa cells, HEK293 cells, stable HeLa and HEK293 cell lines containing integrated HBV-X or HBV-S reporter sequences, HepG2.2.15 and HepG2-H1.3., HepG2hNTCP | RFP↔, GFP↑, HBsAg↓, particle production↓ | N/A | [64] |
CRISPR/Cas9 | LV transduction | RT, sAg, C | FLuc, integrated HBV genome | 293 T-cells, HepAD38 and HepaRG, HBV2.2.15 cells | Luciferase expression↓, RT↓, HBV DNA↓, HBeAg↓, HBsAg↓, cccDNA↓, total DNA↓ | N/A | [65] |
CRISPR/Cas9 | Transfection, LV transduction, and HDI | P-, S-, X-, and C | HBV genotype D replication-competent plasmid (pHBV1.3) | HepG2 cells, BALB/c mice | HBV mRNA↓, HBV DNA↓, rcDNA↓, replication intermediate↓, HBeAg↓, HBsAg↓, HBcAg↓ | No cytotoxicity | [66] |
CRISPR/Cas9 | Transfection, LV transduction, and HDI | Core, pol, X, S | HBV-expressing plasmid | HepG2.2.15 cells, NRG mice | pgRNA↓, HBsAg↓, viremia↓, HBeAg↓, viral mRNA↓, core↓, cccDNA↓, de novo HBV infection↓ | N/A | [67] |
CRISPR/Cas9 | Transfection | PreS/S, Enhl, X, preC/C | pBB4.5-HBV1.2, genotype C | HuH-7 cells, HepAD38 cells | HBsAg↓, HBeAg↓, HBV DNA↓, cccDNA↓ | No cytotoxicity | [68] |
CRISPR/Cas9 | Transfection, LV transduction, and HDI | P-, S-, X-, and C | pAAV-HBV1.3 | HepG2.2.15 cells, HDI in mice, HBV transgenic (HBV-Tg) model | HBsAg↓, cccDNA↓ | N/A | [69] |
CRISPR/Cas9nickase | Transfection | S, X, C | 1.4XHBV DNA | HepG2, HEK293T cells | HBsAg↓, HBeAg↓, replicative intermediates↓, extracellular HBV DNA↓ | No off-target mutations | [70] |
CRISPR/Cas9 | LV transduction | X and P | HBV from HepAD38 or 2.2.15 cells | HepG2/NTCP cells, HepAD38 cells | HBcAg↓ | N/A | [71] |
CRISPR/Cas9 | Transfection | X and P | pcHBV1.3 | Huh7 and HepG2 cells, M-TgHBV mice by HDI | HBsAg↓, HBeAg↓, HBcAg↓ | N/A | [72] |
CRISPR/Cas9 | Lipid-like nanoparticles | S, X, C, P | 1.3XHBV DNA | HepAD38 cells, mouse model by HDI | HBsAg↓, HBeAg↓, HBV DNA↓, HBV RNA↓ | N/A | [73] |
CRISPR/Cas9 | Transfection | Repeated core region | Integrated HBV DNA | HepG2.A64 | HBsAg↓, HBeAg↓, HBV DNA↓, cccDNA↓ | No off-target mutations | [74] |
CRISPR/saCas9 | AAV | S and P | N/A | hNTCP-HepG2 cells, HepG2.2.15 cells | HBsAg↓, HBV DNA↓, pgRNA↓, viral particle↓, cccDNA↓ | No off-target mutations | [75] |
CRISPR/Cas9 | Transfection and HDI | PreS, X, C, P | 1.2×HBV and 3-2 binary | HepG2-NTCP-tet, HepAD38 cells, C57BL/6 mice | HBsAg↓, HBeAg↓, HBcAg↓, cccDNA↓ | N/A | [76] |
CRISPR/saCas9 | AAV8 and HDI | S, P, C | pHBV-1.3B, prcccDNA/pCre, pAAV/HBV1.2 | Huh7, HepG2.2.15 and HepAD38 cells, C3H mice | HBsAg↓, HBeAg↓, HBV DNA↓, pgRNA↓, cccDNA↓, rcccDNA↓ | No off-target mutations | [77] |
CRISPR/Cas9 | High capacity AV | RT, P1, XCp | 1.3 HBV genome containing plasmid pTHBV2,28 | HepG2.2.15 cells, HepG-NTCP, HEK293 cells | HBsAg↓, HBV DNA↓, cccDNA↓, HBV RNA↓ | No off-target mutations | [78] |
CRISPR/Cas9nickase | Transfection | PreS1, S2, S | N/A | HepG2-2.15, PLC/PRF/5, Hep3B, xenograft mouse | HBsAg↓ | Proliferation↓, tumorigenicity↓, IL-6↓, pSTAT3↓ | [79] |
Target Virus | CRISPR/Cas System | CRISPR/Cas Delivery | gRNA Target | Virus Study Model | Cell or Animal | Effect on Virus | Effect on Host | Reference |
---|---|---|---|---|---|---|---|---|
HSV-1 | CRISPR/Cas9 | Transfection and LV transduction | ICP0, ICP4, ICP27 | HSV-1 | Vero cells, ICP0-complementing L7 cell line27, TC620 cells | Virus titer↓, HSV-1 infection↓, protein expression↓, HSV-1 replication↓, resistant to new infection | PML restoration, no off-target mutations | [89] |
CRISPR/Cas9 | Transfection | UL7 | HSV-1 strains 8 F | Vero cells, 293 T cells, BALB/c mice | Replication↓, in vivo virulence↓, viral load↓, LAT mRNA↓, IE a-4 transcription↓ | Inflammation↓ | [88] | |
EBV | CRISPR/Cas9 | Nucleofection | EBNA, LMP | N/A | Burkitt’s lymphoma cell lines Raji, Namalwa, and DG-75 | Viral load↓ | Cell proliferation↓, apoptosis↑ | [91] |
CRISPR/Cas9 | Transfection | Bart promoter | GFP-expressing BX1 strain of EBV | HEK293-BX1 cells, AGS1-BX1, C666-1, and NP460-EBV | miR-Bart3↓, viral yields↓, insertion of DsRed | N/A | [92] | |
CRISPR/Cas9 | Transfection | EBNA1, OriP and W repeats | N/A | Nasopharyngeal carcinoma C666-1, HEK293M81 cells | EBV DNA↓, lytic replication↓, infection titer↓ | Sensitized to chemotherapeutic killing | [93] | |
HCMV | CRISPR/Cas9 | LV transduction | UL122/123 genes | TB40GFP and Toledo | MRC5 primary fibroblast cells, U-251 MG astrocytoma cells | IE protein expression↓, genome replication↓, late protein expression↓, particle production↓, envelope glycoprotein B↓ | N/A | [95] |
HSV-1, EBV, & HCMV | CRISPR/Cas9 | LV transduction | miRNAs BARTs, EBNA1, EBV OriP | GFP-EBV, HCMV, HCMV: AD169 | SNU-719, Burkitt’s lymphoma Akata-Bx1 cells, Vero cells, MRC5 cells | Escape variants, virus replication↓, viral breakthrough, viral titer↓, no effect on quiescence HSV-1 replication, reactivated HSV-1 from latency↓ | N/A | [96] |
Target Virus | CRISPR/Cas System | CRISPR/Cas Delivery | gRNA Target | Virus Study Model | Cell or Animal | Effect on Virus | Effect on Host | Reference |
---|---|---|---|---|---|---|---|---|
HPV-16 | CRISPR/Cas9 | Transfection | E7 | Split and reconstituted luciferase | SiHa, Caski, C33A, and HEK293 cells | E7 protein↓ | Luciferase expression↑, apoptosis, and growth inhibition, pRb↑ | [97] |
HPV-18 | CRISPR/Cas9 | LV transduction | E6 and E7 | Rev-gRNA target-GFP | 293 T cells, HeLa cells, SiHa cells | N/A | GFP expression↓, p53↑, p21↑, pRb↑, Cell cycle arrest at G1, DNA replication↓, tumor cell death, no off-target mutations | [98] |
HPV-16 | CRISPR/Cas9 | Transfection | E6/E7 promoter, E6, and E7 | N/A | SiHa and C33-A, BALB/C nude mice | E6 mRNA↓, E7 mRNA↓ | p53↑, p21↑, pRb↑, tumor growth↓ | [99] |
HPV-6 11 | CRISPR/Cas9 | Transfection | E7 | N/A | Foreskin keratinocytes | E7 protein↓ | Cell growth↓, apoptosis↑ | [100] |
HPV-16 | CRISPR/Cas9 | Transfection | E6 and E7 | N/A | SiHa and C33-A | N/A | p53↑, p21↑, pRb↑, tumor growth↓ | [101] |
HPV-18 | CRISPR/Cas9 | Transfection | E6 and E7 | N/A | SiHa and HeLa cells | N/A | p53↑, p21↑, pRb↑, cell growth↓ | [102] |
HPV-16 | CRISPR/saCas9 | AAV8 | HPV-16 E6 and E7 | N/A | 293 T cells | N/A | PDX tumor volume↓ | [103] |
Target Virus | CRISPR/Cas System | CRISPR/Cas Delivery | gRNA Target | Virus Study Model | Cell or Animal | Effect on Virus | Effect on Host | Reference |
---|---|---|---|---|---|---|---|---|
Polyomavirus JCV | CRISPR/Cas9 | Transfection and LV transduction | T antigen | N/A | TC620 and SVG-A cells, BsB8 cells, HJC-2 | T-Ag↓, viral replication↓, VP1↓, agnoprotein↓, colony number↓ | No off-target mutations | [105] |
ASFV | CRISPR/Cas9 | Transfection | p30 (CP204L) | ASFV strain BA71V | WSL-gRp30 cells | Plaque formation↓, virus yield↓ | No effects on cell growth | [107] |
PRV | CRISPR/Cas9 | Transfection | UL30 | Pseudorabies virus (Suid herpesvirus 1, PRV) | PK-15 cells | PRV replication and yield↓↑, UL30↓, escape mutants | No off-target mutations | [109] |
CRISPR/Cas9 | Transfection and LV transduction | 75 sgRNAs | Luc Tag PRV | Vero cells, PK15 cells | Luciferase expression↓, virus titer↓↑,escape mutants | N/A | [110] | |
HCV | CRISPR/FnCas9 | Tranfection | 5’UTR, 3’UTR | HCVcc GT2 | Huh7.5 cells | E2↓, luciferase↓, viral translation↓, replication↓ | Independent on PAM | [113] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C. CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules 2019, 24, 1349. https://doi.org/10.3390/molecules24071349
Lee C. CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules. 2019; 24(7):1349. https://doi.org/10.3390/molecules24071349
Chicago/Turabian StyleLee, Choongho. 2019. "CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge" Molecules 24, no. 7: 1349. https://doi.org/10.3390/molecules24071349
APA StyleLee, C. (2019). CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules, 24(7), 1349. https://doi.org/10.3390/molecules24071349