Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Nutritional Value
2.2. Non-Volatile Compounds Relating to Special Flavour
2.3. Volatile Aroma Compounds Relating to Special Flavor
2.4. Antioxidant Activity
2.5. Antihyperglycemic Activity
3. Materials and Methods
3.1. Mushroom Species
3.2. Standards and Reagents
3.3. Nutritional Value Assay
3.4. Fatty Acids Composition Assay
3.5. Metal Elements Assay
3.6. Free Sugars and Free Amino Acids Assay
3.7. Flavor 5′-Nucleotides Assay
3.8. Organic Acids Assay
3.9. Equivalent Umami Concentration
3.10. Volatile Aroma Components Assay
3.11. Ethanol and Aqueous Extracts Preparation
3.12. Antioxidant Activity Assay
3.12.1. DPPH Radical Scavenging Activity Assay
3.12.2. ABTS Radical Scavenging Activity Assay
3.12.3. Ferric Ion Reducing Activity Assay
3.12.4. Total Polyphenols Content Assay
3.13. Antihypertensive Activity Assay
3.13.1. α-Amylase Inhibition Activity Assay
3.13.2. α-Glucosidase Inhibition Activity Assay
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Okoro, I.O. Antioxidant activities and phenolic contents of three mushroom species, Lentinus squarrosulus Mont. Volvariella esculenta (Massee) Singer and Pleurocybella porrigens (Pers.) Singer. Int. J. Nutr. Metab. 2012, 4, 72–76. [Google Scholar]
- Ouzouni, P.K.; Petridis, D.; Koller, W.D.; Riganakos, K.A. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Dillon, A.J.P.; Henriques, J.A.P.; Ely, M.R. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr. Sci. 2014, 5, 1095–1105. [Google Scholar]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, P.G.; Chang, S.T. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Culleré, L.; Ferreira, V.; Chevret, B.; Venturini, M.E.; Sánchez-Gimeno, A.C.; Blanco, D. Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry. Food Chem. 2010, 122, 300–306. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.J.; Choi, H.K.; Kim, Y.S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Mizuno, T. Bioactive biomolecules of mushrooms: Food function and medicinal effect of mushroom fungi. Food Rev. Int. 1995, 11, 5–21. [Google Scholar] [CrossRef]
- Verbeken, A.; Nuytinck, J. Not every milkcap is a Lactarius. Scr. Bot. Belg. 2013, 51, 162–168. [Google Scholar]
- Feussi Tala, M.; Qin, J.; Ndongo, J.T.; Laatsch, H. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Nat. Prod. Bioprospect. 2017, 7, 269–273. [Google Scholar] [CrossRef]
- Anke, H.; Bergendorff, O.; Sterner, O. Assays of the biological activities of guaiane sesquiterpenoids isolated from the fruit bodies of edible lactarius species. Food Chem. Toxicol. 1989, 27, 393–397. [Google Scholar] [CrossRef]
- Bergendorff, O.; Sterner, O. The sesquiterpenes of Lactarius deliciosus and Lactarius deterrimus. Phytochemistry 1988, 27, 97–100. [Google Scholar] [CrossRef]
- Ding, X.; Hou, Y.; Hou, W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohyd. Polym. 2012, 89, 397–402. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, L.; Ding, X.; Zhao, D.; Hou, W. Structure elucidation, proliferation effect on macrophage and its mechanism of a new heteropolysaccharide from Lactarius deliciosus Gray. Carbohyd. Polym. 2016, 152, 648–657. [Google Scholar] [CrossRef]
- Vetter, J. Trypsin inhibitor activity of basidiomycetous mushrooms. Eur. Food Res. Technol. 2000, 211, 346–348. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B.; Rančić, A.; Stanojković, T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J. Food Drug Anal. 2016, 24, 477–484. [Google Scholar] [CrossRef]
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. Pharma Nutr. 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Miyazawa, M.; Takahashi, T.; Horibe, I.; Ishikawa, R. Two new aromatic compounds and a new D-arabinitol ester from the mushroom Hericium erinaceum. Tetrahedron 2012, 68, 2007–2010. [Google Scholar] [CrossRef]
- Myrdal Miller, A.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.X. Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted with mushrooms. J. Food Sci. 2014, 79, S1795–S1804. [Google Scholar] [CrossRef]
- Beluhan, S.; Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 2011, 124, 1076–1082. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, J.; Wu, L.H.; Zhao, Y.L.; Li, T.; Li, J.Q.; Wang, Y.Z.; Liu, H.G. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Correia, D.M.; Casal, S.; Oliveira, B.; Ferreira, I.C.F.R. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007, 105, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, N.; Solmaz, M.; Türkekul, İ.; Elmastaş, M. Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem. 2006, 99, 168–174. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Calder, P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Ouzouni, P.K.; Veltsistas, P.G.; Paleologos, E.K.; Riganakos, K.A. Determination of metal content in wild edible mushroom species from regions of Greece. J. Food Compos. Anal. 2007, 20, 480–486. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Çayır, A.; Coşkun, M.; Coşkun, M. The heavy metal content of wild edible mushroom samples collected in Canakkale province, Turkey. Biol. Trace Elem. Res. 2010, 134, 212–219. [Google Scholar] [CrossRef]
- Mendil, D.; Uluözlü, Ö. D.; Hasdemir, E.; Çaǧlar, A. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem. 2004, 88, 281–285. [Google Scholar] [CrossRef]
- Kalač, P.; Svoboda, L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Food and Nutrition Board; Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Acad. Nutr. Diet. 2001, 101, 294–301. [Google Scholar]
- Pei, F.; Shi, Y.; Gao, X.; Wu, F.; Mariga, A.M.; Yang, W.; Zhao, L.; An, X.; Xin, Z.; Yang, F.; Hu, Q. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem. 2014, 165, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, Q.; Bao, C.; Fan, J. Comparison of free total amino acid compositions and their functional classifications in 13 wild edible mushrooms. Molecules 2017, 22, 350. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Lin, H.C.; Mau, J.L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Vieira, V.; Barros, L.; Martins, A.; Ferreira, I. Nutritional and biochemical profiling of Leucopaxillus candidus (Bres.) Singer wild mushroom. Molecules 2016, 21, 99. [Google Scholar] [CrossRef]
- Mocan, A.; Fernandes, A.; Barros, L.; Crisan, G.; Smiljkovic, M.; Sokovic, M.; Ferreira, I. Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: A study with samples from Romania. Food Funct. 2018, 9, 160–170. [Google Scholar] [CrossRef]
- Toledo, C.V.; Barroetaveña, C.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus spp. forest, Argentina. Molecules 2016, 21, 1201. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal. Method. 2013, 6, 309–316. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the relative taste intensity of some L-α-amino acids and 5’-nucleotides. J. Food Sci. 1971, 36, 846–849. [Google Scholar] [CrossRef]
- Mau, J. The umami taste of edible and medicinal mushrooms. Int. J. Med. Mushrooms 2005, 7, 119–126. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef]
- Çağlarırmak, N. The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chem. 2007, 105, 1188–1194. [Google Scholar] [CrossRef]
- Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 2013, 60, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Moo-Huchin, V.M.; Moo-Huchin, M.I.; Estrada-León, R.J.; Cuevas-Glory, L.; Estrada-Mota, I.A.; Ortiz-Vázquez, E.; Betancur-Ancona, D.; Sauri-Duch, E. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 2015, 166, 17–22. [Google Scholar] [CrossRef]
- Bhandari, M.R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
- Hasan, M.T. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Artington, VR, USA, 2015. [Google Scholar]
- Sommer, I.; Schwartz, H.; Solar, S.; Sontag, G. Effect of gamma-irradiation on flavour 5′-nucleotides, tyrosine, and phenylalanine in mushrooms (Agaricus bisporus). Food Chem. 2010, 123, 171–174. [Google Scholar] [CrossRef]
- Xiang, C.; Xu, Z.; Liu, J.; Li, T.; Yang, Z.; Ding, C. Quality, composition, and antioxidant activity of virgin olive oil from introduced varieties at Liangshan. LWT Food Sci. Technol. 2017, 78, 226–234. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, L.; Xu, C.; Mei, J.; Li, Y. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chem. 2017, 214, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xiao, X.; Wang, J.; Chen, C.Y.O.; Hu, H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT Food Sci. Technol. 2017, 82, 154–161. [Google Scholar] [CrossRef]
- He, M.; Zeng, J.; Zhai, L.; Liu, Y.; Wu, H.; Zhang, R.; Li, Z.; Xia, E. Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices. Food Res. Int. 2017, 102, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, P.; Bomzan, D.P.; Sathyendra Rao, B.V.; Sreerama, Y.N. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chem. 2016, 199, 330–338. [Google Scholar] [CrossRef]
Sample Availability: Lyophilized powder of L. deliciosus is available from the authors. |
Component | L. deliciosus |
---|---|
Moisture (g per 100 g) | 92.00 ± 0.64 |
Dry matter (g per 100 g) | 8.00 ± 0.64 |
Total carbohydrate (g per 100 g dw) | 66.61 ± 1.02 |
Crude fat (g per 100 g dw) | 4.82 ± 0.15 |
Crude Protein (g per 100 g dw) | 17.19 ± 0.06 |
Ash (g per 100 g dw) | 8.62 ± 0.25 |
Energy (kcal per 100 g dw) | 378.60 ± 2.74 |
Total dietary fiber (g per 100 g dw) | 31.81 ± 1.51 |
Insoluble dietary fiber (g per 100 g dw) | 26.51 ± 1.54 |
Soluble dietary fiber (g per 100 g dw) | 5.30 ± 0.36 |
C16:0 (% of total fatty acids) | 5.17 ± 0.30 |
C18:0 (% of total fatty acids) | 16.96 ± 0.19 |
C18:1 (% of total fatty acids) | 48.37 ± 0.62 |
C18:2 (% of total fatty acids) | 29.49 ± 0.55 |
Element | Content (mg per kg dw) | Daily Intake (mg/day) a | RDA or AI (mg/d) d | RDA or AI % d | ||
---|---|---|---|---|---|---|
Male | Female | Male | Female | |||
Magnesium | 1244.29 ± 42.16 | 37.33 | 400 b | 310 b | 9.33 | 12.04 |
Calcium | 247.07 ± 4.23 | 7.41 | 1000 c | 1000 c | 0.74 | 0.74 |
Zinc | 52.34 ± 2.68 | 1.57 | 11 b | 8 b | 14.28 | 19.63 |
Manganese | 23.12 ± 0.75 | 0.69 | 2.3 c | 1.8 c | 30.16 | 38.53 |
Iron | 197.01 ± 13.14 | 5.91 | 8 b | 18 b | 73.88 | 32.84 |
Chromium | 4.02 ± 0.69 | 0.12 | 0.035 c | 0.025 c | 344.57 | 482.40 |
Copper | 1.28 ± 0.02 | 0.04 | 0.9 b | 0.9 b | 4.27 | 4.27 |
Arsenic | 0.75 ± 0.04 | 0.02 | - | - | - | - |
Cadmium | 1.91 ± 0.05 | 0.06 | - | - | - | - |
Plumbum | 0.85 ± 0.04 | 0.03 | - | - | - | - |
Free Amino Acid | Content (mg per 100 g dw) |
---|---|
Aspartic acid b | 39.43 ± 0.87 |
Glutamic acid b | 376.29 ± 4.12 |
Asparagine | 79.41 ± 0.84 |
Serine c | 136.35 ± 0.66 |
Glutamine | 794.06 ± 54.85 |
Histidine a,d | 278.57 ± 23.62 |
Glycine c | 91.32 ± 0.59 |
Threonine a,c | 131.76 ± 3.45 |
Citrulline | 16.26 ± 0.59 |
Arginine d | 155.70 ± 11.34 |
Alanine c | 375.38 ± 2.59 |
Tyrosine d | 91.53 ± 1.38 |
Cystine | - |
Valine a,d | 122.17 ± 4.93 |
Methionine a, d | 25.41 ± 0.62 |
Tryptophan a, d | 68.95 ± 0.43 |
Phenylalanine a, d | 133.61 ± 0.45 |
Isoleucine a, d | 47.82 ± 0.95 |
Leucine a, d | 109.53 ± 1.61 |
Lysine a | 208.46 ± 16.92 |
Hydroxyproline | - |
Proline | 107.43 ± 12.44 |
Total free amino acids (TAA) | 3389.45 ± 38.13 |
Component | Content (mg per 100 g dw) |
---|---|
5′-CMP | 929.85 ± 42.33 |
5′-UMP | 45.21 ± 6.72 |
5′-IMP | 311.75 ± 13.43 |
5′-AMP | 14.49 ± 3.37 |
Trehalose | 4990.09 ± 307.95 |
Mannitol | 7825.00 ± 466.72 |
Quininic acid | 729.84 ± 71.80 |
l-Malic acid | 415.63 ± 87.44 |
Fumaric acid | 120.71 ± 11.45 |
Component | Composition (%) |
---|---|
Heptanal | 2.03 ± 0.15 |
Benzaldehyde | 2.23 ± 0.09 |
Hexanoic acid | 0.67 ± 0.02 |
Octanal | 1.19 ± 0.07 |
Benzyl alcohol | 0.08 ± 0.00 |
2-Octenal | 0.58 ± 0.11 |
Nonanal | 1.58 ± 0.16 |
2-Nonenal | 0.83 ± 0.05 |
Dodecane | 0.29 ± 0.04 |
Decanal | 0.79 ± 0.05 |
2-Decenal | 1.62 ± 0.29 |
Undecanal | 0.46 ± 0.02 |
2,4-Decadienal | 0.29 ± 0.01 |
2-Undecenal | 1.48 ± 0.18 |
2-Butyl-2-octenal | 0.16 ± 0.02 |
n-Decanoic acid | 0.76 ± 0.05 |
Decanoic acid, ethyl ester | 0.24 ± 0.01 |
Tetradecane | 0.38 ± 0.06 |
Dodecanal | 0.47 ± 0.08 |
2-Dodecenal | 0.65 ± 0.03 |
Tridecanal | 0.41 ± 0.10 |
n-Hexadecanoic acid | 12.82 ± 0.67 |
9,12-Octadecadienoic acid | 3.11 ± 0.21 |
9-Octadecenoic acid | 60.57 ± 2.89 |
Octadecanoic acid | 6.30 ± 0.74 |
TEAC DPPH (μmolTrolox/g dw) a | TEAC ABTS (μmolTrolox/g dw) b | TEAC FRAP (μmolTrolox/g dw) c | Total Phenols Content (mg GAE/g dw) d | |
---|---|---|---|---|
Ethanol extract | 18.38 ± 1.31 | 20.07 ± 1.75 | 10.72 ± 1.04 | 4.55 ± 0.24 |
Aqueous extract | 45.63 ± 4.40 | 48.05 ± 3.37 | 22.28 ± 3.25 | 13.68 ± 0.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Fu, L.; Feng, S.; Yuan, M.; Huang, Y.; Liao, J.; Zhou, L.; Yang, H.; Ding, C. Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China. Molecules 2019, 24, 1357. https://doi.org/10.3390/molecules24071357
Xu Z, Fu L, Feng S, Yuan M, Huang Y, Liao J, Zhou L, Yang H, Ding C. Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China. Molecules. 2019; 24(7):1357. https://doi.org/10.3390/molecules24071357
Chicago/Turabian StyleXu, Zhou, Liang Fu, Shiling Feng, Ming Yuan, Yan Huang, Jinqiu Liao, Lijun Zhou, Hongyu Yang, and Chunbang Ding. 2019. "Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China" Molecules 24, no. 7: 1357. https://doi.org/10.3390/molecules24071357
APA StyleXu, Z., Fu, L., Feng, S., Yuan, M., Huang, Y., Liao, J., Zhou, L., Yang, H., & Ding, C. (2019). Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China. Molecules, 24(7), 1357. https://doi.org/10.3390/molecules24071357