Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content
Abstract
:1. Introduction
2. Results
2.1. Influence of the Botanical Origin of Oenological Tannins
2.2. Influence of Copigment/Pigment Ratio and pH
2.3. Influence of Copigment/Pigment Ratio and Ethanol Content
3. Discussion
4. Materials and Methods
4.1. Chemicals and Equipments
4.2. Commercial Tannins
4.3. Influence of the Botanical Origin
4.4. Influence of the pH Level
4.5. Influence of Ethanol Content
4.6. Colorimetric Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burns, J.; Mullen, W.; Landrault, N.; Teissedre, P.-L.; Lean, M.E.J.; Crozier, A. Variations in the Profile and Content of Anthocyanins in Wines Made from Cabernet Sauvignon and Hybrid Grapes. J. Agric. Food Chem. 2002, 50, 4096–4102. [Google Scholar] [CrossRef]
- Budić-Leto, I.; Vrhovšek, U.; Gajdoš Kljusurić, J.; Lovrić, T. Anthocyanin pattern of skin extracts from the Babić and Plavac mali grapes and anthocyanin pattern of the produced wine. Acta Aliment. 2009, 38, 67–75. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Fernández-González, M.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Red-Color Related Phenolic Composition of Garnacha Tintorera (Vitis vinifera L.) Grapes and Red Wines. J. Agric. Food Chem. 2009, 57, 7883–7891. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines II. Anthocyanin Derived Pigments and Their Color Evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [Green Version]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Bautista-Ortín, A.B. The Extraction of Anthocyanins and Proanthocyanidins from Grapes to Wine during Fermentative Maceration Is Affected by the Enological Technique. J. Agric. Food Chem. 2011, 59, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Eiro, M.J.; Heinonen, M. Anthocyanin Color Behavior and Stability during Storage: Effect of Intermolecular Copigmentation. J. Agric. Food Chem. 2002, 50, 7461–7466. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; de Freitas, V. Influence of Phenolics on Wine Organoleptic Properties. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 529–570. ISBN 978-0-387-74116-1. [Google Scholar]
- Clifford, M.N. Anthocyanins—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Versari, A.; du Toit, W.; Parpinello, G.P. Oenological tannins: A review: Oenological tannins. Aust. J. Grape Wine Res. 2013, 19, 1–10. [Google Scholar] [CrossRef]
- Quideau, S.; Varadinova, T.; Karagiozova, D.; Jourdes, M.; Pardon, P.; Baudry, C. Main structural and stereochemical aspects of the antiherpetic activity of nonahydroxyterphenoyl-containing C-glycosidic ellagitannins. Chem. Biodivers. 2004, 247–258. [Google Scholar] [CrossRef]
- Asproudi, A.; Piano, F.; Anselmi, G.; Di Stefano, R.; Bertolone, E.; Borsa, D. Proanthocyanidin composition and evolution during grape ripening as affected by variety: Nebbiolo and Barbera cv. OENO One 2015, 49, 59. [Google Scholar] [CrossRef]
- Celzard, A.; Szczurek, A.; Jana, P.; Fierro, V.; Basso, M.-C.; Bourbigot, S.; Stauber, M.; Pizzi, A. Latest progresses in the preparation of tannin-based cellular solids. J. Cell. Plast. 2015, 51, 89–102. [Google Scholar] [CrossRef]
- Hoong, Y.B.; Pizzi, A.; Md. Tahir, P.; Pasch, H. Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS 13C NMR. Eur. Polym. J. 2010, 46, 1268–1277. [Google Scholar] [CrossRef]
- Zamora-Marín, F. El Tanino Enológico en la Vinificación en Tinto; S.A. Mundi-Prensa Libros: Madrid, Spain, 2003; pp. 26–30. [Google Scholar]
- Zhang, B.; Yang, X.-S.; Li, N.-N.; Zhu, X.; Sheng, W.-J.; He, F.; Duan, C.-Q.; Han, S.-Y. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions. Food Res. Int. 2017, 102, 468–477. [Google Scholar] [CrossRef]
- OIV. Receuil des Méthodes Internationales d’Analyse des vins et des Mouts; OIV himselfe: Paris, France, 2009; Volume 1. [Google Scholar]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A Review of the Effect of Winemaking Techniques on Phenolic Extraction in Red Wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar]
- Schwarz, M.; Picazo-Bacete, J.J.; Winterhalter, P.; Hermosín-Gutiérrez, I. Effect of Copigments and Grape Cultivar on the Color of Red Wines Fermented after the Addition of Copigments. J. Agric. Food Chem. 2005, 53, 8372–8381. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, B.; Rodríguez-Pulido, F.J.; Escudero-Gilete, M.L.; González-Miret, M.L.; Heredia, F.J. Comprehensive Colorimetric Study of Anthocyanic Copigmentation in Model Solutions. Effects of pH and Molar Ratio. J. Agric. Food Chem. 2012, 60, 2896–2905. [Google Scholar] [CrossRef]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Souquet, J.-M.; Sarni-Manchado, P.; Fulcrand, H. Structure and Properties of Wine Pigments and Tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar]
- Falcão, L.D.; Falcão, A.P.; Gris, E.F.; Bordignon-Luiz, M.T. Estudo espectrofotométrico da estabilidade de antocianinas de cascas de uvas Cabernet Sauvignon em sistema modelo. Braz. J. Food Technol. 2008, 11, 7. [Google Scholar]
- Hermosín Gutiérrez, I. Influence of Ethanol Content on the Extent of Copigmentation in a Cencibel Young Red Wine. J. Agric. Food Chem. 2003, 51, 4079–4083. [Google Scholar] [CrossRef]
- Tseng, K.-C.; Chang, H.-M.; Wu, J.S.-B. Degradation Kinetics Of Anthocyanin In Ethanolic Solutions. J. Food Process. Preserv. 2006, 30, 503–514. [Google Scholar] [CrossRef]
- Morais, H.; Ramos, C.; Forgasc, E.; Cserháti, T.; Matos, N.; Almeida, V.; Oliveira, J. Stability of anthocyanins extracted from grape skins. Chromatographia 2002, 56, S173–S175. [Google Scholar] [CrossRef]
- Abyari, M.; Heidari, R.; Jamei, R. The effects of heating, UV Irradiation and pH on stability of Siahe Sardasht grape anthocyanin-copigment complex. J. Biol. Sci. 2006, 6, 638–645. [Google Scholar]
- Pascual, O.; Vignault, A.; Gombau, J.; Navarro, M.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Teissedre, P.-L.; Zamora, F. Oxygen consumption rates by different oenological tannins in a model wine solution. Food Chem. 2017, 234, 26–32. [Google Scholar] [CrossRef]
- Malacarne, M.; Antoniolli, G.; Bertoldi, D.; Nardin, T.; Larcher, R. Botanical origin characterisation of tannins using infrared spectroscopy. Food Chem. 2018, 267, 204–209. [Google Scholar] [CrossRef]
- Vignault, A.; González-Centeno, M.R.; Pascual, O.; Gombau, J.; Jourdes, M.; Moine, V.; Iturmendi, N.; Canals, J.M.; Zamora, F.; Teissedre, P.-L. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018, 268, 210–219. [Google Scholar] [CrossRef]
- Vignault, A.; Pascual, O.; Gombau, J.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P.-L.; Zamora, F. New insight about the functionality of oenological tannins; Main results of the working group on oenological tannins. BIO Web Conf. 2019, 12, 02005. [Google Scholar] [CrossRef]
- Marković, J.M.D.; Petranović, N.A.; Baranac, J.M. The copigmentation effect of sinapic acid on malvin: A spectroscopic investigation on colour enhancement. J. Photochem. Photobiol. B Biol. 2005, 78, 223–228. [Google Scholar] [CrossRef]
- Gauche, C.; da Silva Malagoli, E.; Bordignon Luiz, M.T. Effect of pH on the copigmentation of anthocyanins from Cabernet Sauvignon grape extracts with organic acids. Sci. Agric. 2010, 67, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color Stability of Commercial Anthocyanin-Based Extracts in Relation to the Phenolic Composition. Protective Effects by Intra- and Intermolecular Copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef]
- Sun, J.; Cao, X.; Bai, W.; Liao, X.; Hu, X. Comparative analyses of copigmentation of cyanidin 3-glucoside and cyanidin 3-sophoroside from red raspberry fruits. Food Chem. 2010, 120, 1131–1137. [Google Scholar] [CrossRef]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Tannins | A 520 | L* | a* | b* | hab | C*ab | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(−)-Epicatechin | 0.061 ± 0.008 | b | −1.39 ± 0.06 | a | 2.29 ± 0.02 | a | −1.15 ± 0.09 | b | −8.9 ± 0.2 | a | 2.51 ± 0.03 | a | |
PC/PD | Grape 1 | 0.141 ± 0.004 | -2.09 ± 0.60 | 2.26 ± 0.50 | -1.00 ± 0.04 | -7.2 ± 0.3 | 2.45 ± 0.05 | ||||||
Grape 2 | 0.145 ± 0.002 | −1.47 ± 0.60 | 1.56 ± 0.10 | −0.86 ± 0.06 | −7.2 ± 0.5 | 1.71 ± 0.10 | |||||||
Grape 3 | 0.167 ± 0.002 | −1.84 ± 0.00 | 1.93 ± 0.20 | −0.88 ± 0.05 | −7.5 ± 0.4 | 2.01 ± 0.06 | |||||||
AV Grapes | 0.151 ± 0.014 | a | −1.80 ± 0.31 | a | 1.92 ± 0.35 | a | −0.91 ± 0.07 | b | −7.3 ± 0.2 | a | 2.06 ± 0.37 | a | |
Seed 1 | 0.128 ± 0.001 | −1.04 ± 0.00 | 1.06 ± 0.60 | −0.47 ± 0.05 | −5.2 ± 0.5 | 1.26 ± 0.06 | |||||||
Seed 2 | 0.174 ± 0.007 | −2.70 ± 0.00 | 2.43 ± 0.50 | −1.02 ± 0.04 | −7.9 ± 0.5 | 2.49 ± 0.04 | |||||||
Seed 3 | 0.073 ± 0.002 | −0.90 ± 0.00 | 1.40 ± 0.60 | −0.63 ± 0.04 | −6.0 ± 0.3 | 1.62 ± 0.04 | |||||||
Seed 4 | 0.054 ± 0.002 | −0.63 ± 0.00 | 1.25 ± 0.70 | −0.52 ± 0.08 | −5.3 ± 0.8 | 1.45 ± 0.03 | |||||||
AV Seeds | 0.107 ± 0.055 | a | −1.32 ± 0.94 | a | 1.54 ± 0.61 | a | −0.66 ± 0.25 | a | −6.1 ± 1.2 | a | 1.70 ± 0.54 | a | |
Skin 1 | 0.195 ± 0.022 | −1.96 ± 0.07 | 1.81 ± 0.04 | −0.76 ± 0.02 | −6.7 ± 0.9 | 2.04 ± 0.13 | |||||||
Skin 2 | 0.163 ± 0.002 | −2.49 ± 0.07 | 2.37 ± 0.08 | −1.40 ± 0.09 | −11.3 ± 0.8 | 2.65 ± 0.05 | |||||||
AV Skins | 0.179 ± 0.022 | a | −2.22 ± 0.37 | a | 2.09 ± 0.40 | a | −1.08 ± 0.45 | b | −9.0 ± 3.3 | a | 2.35 ± 0.43 | a | |
AV PC/PD | 0.146 ± 0.036 | B | −1.78 ± 0.45 | A | 1.85 ± 0.28 | B | −0.88 ± 0.21 | A | −7.5 ± 1.5 | A | 2.04 ± 0.32 | C | |
PF/PR | Acacia 1 | 0.125 ± 0.018 | −1.41 ± 0.06 | 0.91 ± 0.08 | −0.53 ± 0.14 | −4.6 ± 0.5 | 1.07 ± 0.06 | ||||||
Acacia 2 | 0.084 ± 0.006 | −1.18 ± 0.14 | 1.18 ± 0.07 | −0.18 ± 0.09 | −1.4 ± 0.8 | 1.20 ± 0.08 | |||||||
AV Acacia | 0.105 ± 0.029 | a | −1.30 ± 0.16 | a | 1.05 ± 0.20 | a | −0.36 ± 0.25 | a | −3.0 ± 2.3 | a | 1.14 ± 0.09 | a | |
Quebracho 1 | 0.078 ± 0.079 | −0.97 ± 0.07 | 1.14 ± 0.04 | −0.83 ± 0.06 | −7.9 ± 0.7 | 1.33 ± 0.04 | |||||||
Quebracho 2 | 0.088 ± 0.047 | −1.23 ± 0.07 | 1.80 ± 0.04 | −2.27 ± 0.05 | −8.1 ± 0.6 | 1.28 ± 0.11 | |||||||
Quebracho 3 | 0.062 ± 0.007 | −1.09 ± 0.06 | 0.97 ± 0.13 | −0.93 ± 0.05 | −9.2 ± 1.6 | 1.39 ± 0.08 | |||||||
Quebracho 4 | 0.076 ± 0.004 | −1.13 ± 0.06 | 1.13 ± 0.15 | −0.99 ± 0.19 | −9.6 ± 0.8 | 1.32 ± 0.16 | |||||||
Quebracho 5 | 0.118 ± 0.010 | −1.49 ± 0.10 | 1.55 ± 0.11 | −1.63 ± 0.11 | −14.4 ± 0.5 | 1.91 ± 0.12 | |||||||
Quebracho 6 | 0.173 ± 0.002 | −2.65 ± 0.06 | 2.72 ± 0.03 | −2.14 ± 0.07 | −16.0 ± 0.3 | 3.17 ± 0.03 | |||||||
AV Quebracho | 0.099 ± 0.041 | a | −1.43 ± 0.63 | a | 1.55 ± 0.65 | a | −1.46 ± 0.64 | b | −10.9 ± 3.5 | b | 1.74 ± 0.74 | a | |
AV PF/PR | 0.102 ± 0.004 | B | −1.36 ± 0.09 | A | 1.30 ± 0.36 | B | −0.91 ± 0.78 | A | −6.96 ± 5.5 | A | 1.44 ± 0.42 | C | |
GT | Nut gall 1 | 0.302 ± 0.014 | −2.76 ± 0.00 | 4.84 ± 0.09 | −2.48 ± 0.10 | −15.6 ± 0.1 | 5.33 ± 0.10 | ||||||
Nut gall 2 | 0.517 ± 0.029 | −4.86 ± 0.21 | 7.01 ± 0.05 | −3.78 ± 0.11 | −20.0 ± 0.1 | 7.72 ± 0.06 | |||||||
Nut gall 3 | 0.234 ± 0.007 | −2.78 ± 0.06 | 5.11 ± 0.04 | −2.41 ± 0.04 | −15.2 ± 0.2 | 5.59 ± 0.15 | |||||||
Nut gall 4 | 0.467 ± 0.025 | -4.36 ± 0.07 | 6.69 ± 0.12 | −4.01 ± 0.05 | −23.5 ± 0.1 | 7.55 ± 0.13 | |||||||
AV Nut galls | 0.380 ± 0.134 | a | −3.69 ± 1.08 | a | 5.91 ± 1.10 | a | −3.17 ± 0.84 | a | −18.6 ± 3.9 | a | 6.55 ± 1.26 | a | |
Tara 1 | 0.520 ± 0.047 | −4.94 ± 0.07 | 7.38 ± 0.03 | −4.21 ± 0.07 | −14.9 ± 0.1 | 5.61 ± 0.03 | |||||||
Tara 2 | 0.409 ± 0.009 | −5.18 ± 0.06 | 7.42 ± 0.07 | −4.29 ± 0.06 | −12.9 ± 0.1 | 4.61 ± 0.06 | |||||||
Tara 3 | 0.588 ± 0.008 | −5.45 ± 0.06 | 8.44 ± 0.07 | −5.65 ± 0.04 | −16.4 ± 0.1 | 5.82 ± 0.09 | |||||||
Tara 4 | 0.512 ± 0.004 | −4.90 ± 0.06 | 7.41 ± 0.06 | −4.22 ± 0.06 | −14.8 ± 0.2 | 8.59 ± 0.06 | |||||||
AV Tara | 0.507 ± 0.074 | a | −5.12 ± 0.25 | b | 7.66 ± 0.52 | a | −4.59 ± 0.71 | a | −14.7 ± 1.4 | a | 6.16 ± 1.71 | a | |
AV GT | 0.443 ± 0.121 | A | −4.40 ± 1.06 | B | 6.79 ± 1.23 | A | −3.88 ± 1.05 | B | −16.7 ± 3.4 | B | 6.35 ± 1.41 | A | |
ET | Chestnut 1 | 0.400 ± 0.012 | −4.03 ± 0.07 | 4.06 ± 0.09 | −3.48 ± 0.06 | −22.8 ± 0.1 | 4.79 ± 0.09 | ||||||
Chestnut 2 | 0.219 ± 0.005 | −3.48 ± 0.12 | 3.96 ± 0.04 | −3.46 ± 0.02 | −23.5 ± 0.1 | 4.72 ± 0.13 | |||||||
Chestnut 3 | 0.219 ± 0.009 | −3.54 ± 0.10 | 4.13 ± 0.08 | −3.48 ± 0.06 | −23.3 ± 0.2 | 4.88 ± 0.08 | |||||||
AV Chestnut | 0.279 ± 0.105 | a | −3.68 ± 0.30 | a | 4.05 ± 0.08 | a | −3.47 ± 0.01 | a | −23.2 ± 0.4 | a | 4.80 ± 0.08 | a | |
Oak 1 | 0.222 ± 0.007 | −3.06 ± 0.07 | 5.98 ± 0.10 | −2.19 ± 0.08 | −15.3 ± 0.1 | 3.83 ± 0.11 | |||||||
Oak 2 | 0.307 ± 0.089 | −3.66 ± 0.07 | 6.35 ± 0.09 | −5.32 ± 0.09 | −36.8 ± 0.0 | 5.28 ± 0.08 | |||||||
Oak 3 | 0.212 ± 0.014 | −2.79 ± 0.00 | 5.28 ± 0.10 | −2.18 ± 0.03 | −22.4 ± 0.1 | 3.03 ± 0.10 | |||||||
Oak 4 | 0.290 ± 0.036 | −3.91 ± 0.21 | 3.89 ± 0.13 | −6.16 ± 0.07 | −27.9 ± 0.1 | 4.27 ± 0.08 | |||||||
Oak 5 | 0.173 ± 0.018 | −2.44 ± 0.12 | 5.08 ± 0.08 | −2.30 ± 0.07 | −17.9 ± 0.1 | 2.73 ± 0.13 | |||||||
Oak 6 | 0.262 ± 0.008 | −2.76 ± 0.00 | 3.09 ± 0.05 | −2.32 ± 0.08 | −11.2 ± 0.1 | 2.57 ± 0.13 | |||||||
Oak 7 | 0.272 ± 0.006 | −2.91 ± 0.07 | 4.00 ± 0.11 | −3.18 ± 0.04 | −10.0 ± 0.1 | 2.78 ± 0.07 | |||||||
Oak 8 | 0.353 ± 0.090 | −2.96 ± 0.07 | 5.38 ± 0.08 | −2.41 ± 0.04 | −10.2 ± 0.1 | 2.86 ± 0.12 | |||||||
AV Oak | 0.261 ± 0.058 | a | −3.06 ± 0.49 | a | 4.88 ± 1.12 | a | −3.26 ± 1.58 | a | −19.0 ± 9.6 | a | 3.42 ± 0.96 | a | |
AV ET | 0.270 ± 0.068 | AB | −3.37 ± 0.52 | B | 4.46 ± 1.02 | A | −3.37 ± 1.33 | B | −21.1 ± 8.2 | B | 4.11 ± 1.03 | B |
A 520 | L* | C*ab | hab | a* | b* | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tanins | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | |||||||
pH 3.1 | (−)-Epicatechin | 0.12 ± 0.00 | 0.9997 | C | α | −1.68 ± 0.00 | 0.9881 | C | β | 2.40 ± 0.02 | 0.9978 | D | α | −5.50 ± 0.00 | 0.9985 | AB | β | 2.19 ± 0.02 | 0.9976 | AB | α | −1.53 ± 0.02 | 0.9828 | A | β |
Grape−seed | 0.11 ± 0.00 | 0.9908 | D | α | −1.55 ± 0.01 | 0.9993 | B | β | 1.95 ± 0.01 | 0.9925 | E | α | −6.95 ± 0.00 | 0.9987 | AB | αβ | 1.70 ± 0.01 | 0.9925 | AB | α | −1.70 ± 0.04 | 0.9842 | AB | β | |
Grape−skin | 0.25 ± 0.01 | 0.9768 | A | α | −3.07 ± 0.00 | 0.9856 | F | β | 3.97 ± 0.00 | 0.9807 | B | α | −4.96 ± 0.00 | 0.9750 | B | α | 3.71 ± 0.00 | 0.9779 | AB | α | −2.07 ± 0.02 | 0.9989 | AB | β | |
Quebracho | 0.02 ± 0.00 | 0.8904 | E | χ | −0.92 ± 0.00 | 0.9758 | A | α | 0.13 ± 0.04 | 0.7953 | F | β | −7.87 ± 0.00 | 0.9946 | AB | α | −0.16 ± 0.03 | 0.8585 | B | β | −1.61 ± 0.04 | 0.9933 | AB | αβ | |
Gallotannin | 0.22 ± 0.00 | 0.8446 | B | β | −3.02 ± 0.00 | 0.8318 | E | αβ | 4.49 ± 0.03 | 0.8377 | A | αβ | −5.36 ± 0.00 | 0.9173 | AB | α | 3.98 ± 0.02 | 0.8384 | A | αβ | −3.18 ± 0.04 | 0.9953 | B | αβ | |
Ellagitannin | 0.13 ± 0.00 | 0.8334 | C | β | −2.71 ± 0.00 | 0.8824 | D | β | 2.52 ± 0.01 | 0.8371 | C | α | −13.05 ± 0.00 | 0.9955 | A | αβ | 2.00 ± 0.01 | 0.8233 | AB | αβ | −3.09 ± 0.02 | 0.9952 | AB | β | |
pH 3.5 | (−)−Epicatechin | 0.06 ± 0.00 | 0.8940 | E | χ | −0.92 ± 0.00 | 0.9231 | A | α | 1.20 ± 0.03 | 0.8937 | D | β | −4.06 ± 0.00 | 0.9763 | B | αβ | 1.12 ± 0.03 | 0.8744 | A | β | −0.62 ± 0.03 | 1.0000 | AB | αβ |
Grape−seed | 0.07 ± 0.00 | 0.9681 | E | β | −1.00 ± 0.00 | 1.0000 | B | αβ | 1.28 ± 0.02 | 0.9619 | D | αβ | −3.01 ± 0.01 | 0.9776 | AB | α | 1.23 ± 0.02 | 0.9702 | AB | αβ | −0.52 ± 0.04 | 0.8378 | A | α | |
Grape−skin | 0.12 ± 0.00 | 0.9581 | D | β | −1.91 ± 0.00 | 0.9791 | C | αβ | 2.01 ± 0.06 | 0.9660 | C | αβ | −7.74 ± 0.01 | 0.9617 | C | αβ | 1.83 ± 0.05 | 0.9610 | AB | αβ | −1.22 ± 0.06 | 0.8009 | AB | αβ | |
Quebracho | 0.17 ± 0.00 | 0.9251 | B | α | −2.33 ± 0.00 | 0.9018 | D | β | 2.50 ± 0.06 | 0.9525 | B | α | −8.74 ± 0.01 | 0.9995 | D | αβ | 2.38 ± 0.06 | 0.9562 | AB | α | −1.15 ± 0.08 | 0.7987 | AB | α | |
Gallotannin | 0.31 ± 0.00 | 0.9885 | A | α | −4.14 ± 0.00 | 0.9832 | F | β | 6.23 ± 0.03 | 0.9897 | A | α | −16.75 ± 0.01 | 0.9516 | F | β | 5.62 ± 0.02 | 0.0885 | B | α | −3.41 ± 0.05 | 0.9986 | B | β | |
Ellagitannin | 0.15 ± 0.00 | 0.9964 | C | α | −2.48 ± 0.00 | 0.9976 | E | αβ | 2.52 ± 0.02 | 0.9959 | B | α | −12.74 ± 0.00 | 0.9828 | E | α | 2.19 ± 0.01 | 0.9930 | AB | α | −1.90 ± 0.01 | 0.9998 | AB | αβ | |
pH 3.9 | (−)-Epicatechin | 0.08 ± 0.00 | 1.0000 | C | β | −1.08 ± 0.00 | 0.9826 | C | αβ | 1.26 ± 0.01 | 0.9922 | C | αβ | −3.79 ± 0.00 | 0.9932 | A | α | 1.20 ± 0.01 | 0.9908 | AB | αβ | −0.45 ± 0.02 | 0.9967 | AB | α |
Grape-seed | 0.05 ± 0.00 | 0.9873 | D | χ | −0.79 ± 0.00 | 0.9973 | A | α | 0.71 ± 0.01 | 0.9304 | F | β | −7.63 ± 0.07 | 1.0000 | B | β | 0.61 ± 0.02 | 0.9131 | B | β | −0.62 ± 0.07 | 0.8536 | AB | αβ | |
Grape-skin | 0.06 ± 0.01 | 0.9873 | D | χ | −0.92 ± 0.00 | 0.8811 | B | α | 0.85 ± 0.02 | 0.9996 | E | β | −11.63 ± 0.01 | 0.9001 | C | β | 0.70 ± 0.01 | 0.7340 | AB | β | −0.15 ± 0.13 | 0.9251 | A | α | |
Quebracho | 0.05 ± 0.00 | 0.9434 | D | β | −1.75 ± 0.00 | 0.9643 | E | αβ | 0.98 ± 0.03 | 0.8275 | D | αβ | −11.92 ± 0.01 | 0.9826 | D | β | 0.80 ± 0.03 | 0.9943 | AB | αβ | −3.07 ± 0.05 | 0.9588 | B | β | |
Gallotannin | 0.15 ± 0.00 | 0.9920 | A | χ | −2.08 ± 0.00 | 0.9952 | F | α | 3.04 ± 0.03 | 0.9954 | A | β | −16.14 ± 0.02 | 0.9924 | E | αβ | 2.74 ± 0.02 | 0.9922 | A | β | −1.75 ± 0.05 | 0.9969 | AB | α | |
Ellagitannin | 0.10 ± 0.00 | 0.9510 | B | χ | −1.65 ± 0.00 | 0.9443 | D | α | 1.62 ± 0.01 | 0.9615 | B | α | −18.34 ± 0.02 | 0.9968 | F | β | 1.33 ± 0.01 | 0.9692 | AB | β | −1.51 ± 0.07 | 0.9898 | AB | α |
A 520 | L* | C*ab | hab | a* | b* | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tanins | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | Cp | r² | Stats | |||||||
EtOH 10 | (−)-Epicatechin | 0.15 ± 0.00 | 0.9999 | C | α | −1.75 ± 0.00 | 0.9993 | B | β | 2.77 ± 0.02 | 0.9989 | C | α | −7.02 ± 0.01 | 0.9717 | B | β | 2.62 ± 0.02 | 0.9980 | C | α | −1.19 ± 0.04 | 0.9828 | C | β |
Grape-seed | 0.12 ± 0.00 | 0.9991 | D | α | −1.46 ± 0.00 | 0.9909 | A | β | 1.83 ± 0.03 | 0.9983 | E | α | −6.27 ± 0.01 | 0.9777 | A | αβ | 1.71 ± 0.02 | 0.9984 | E | α | −0.94 ± 0.04 | 0.9842 | A | αβ | |
Grape-skin | 0.14 ± 0.00 | 0.9849 | C | α | −2.11 ± 0.00 | 0.9861 | D | β | 1.97 ± 0.01 | 0.9827 | D | α | −8.50 ± 0.01 | 0.9967 | C | β | 2.15 ± 0.01 | 0.9857 | D | α | −1.27 ± 0.04 | 0.9989 | B | β | |
Quebracho | 0.12 ± 0.01 | 0.9775 | D | αβ | −2.03 ± 0.00 | 0.9798 | C | αβ | 1.09 ± 0.05 | 0.8761 | F | α | −14.97 ± 0.02 | 0.9875 | D | β | 1.53 ± 0.05 | 0.9521 | F | α | −1.94 ± 0.13 | 0.9933 | C | β | |
Gallotannin | 0.47 ± 0.00 | 0.9983 | A | α | −6.30 ± 0.00 | 0.9979 | F | β | 8.33 ± 0.02 | 0.9979 | A | α | −25.68 ± 0.01 | 0.9424 | F | β | 9.39 ± 0.02 | 0.9983 | A | α | −5.49 ± 0.07 | 0.9953 | E | β | |
Ellagitannin | 0.23 ± 0.00 | 0.9983 | B | α | −3.48 ± 0.00 | 0.9996 | E | β | 4.43 ± 0.02 | 0.9858 | B | α | −20.82 ± 0.00 | 0.9993 | E | β | 3.82 ± 0.01 | 0.9871 | B | α | −3.31 ± 0.02 | 0.9952 | D | α | |
EtOH 12 | (−)-Epicatechin | 0.10 ± 0.00 | 0.9845 | D | αβ | −1.42 ± 0.00 | 0.9935 | B | αβ | 1.78 ± 0.16 | 0.9267 | C | α | −3.55 ± 0.01 | 0.9705 | A | α | 1.93 ± 0.11 | 0.9778 | B | αβ | −0.73 ± 0.12 | 1.0000 | C | α |
Grape-seed | 0.07 ± 0.00 | 0.9902 | F | αβ | −0.56 ± 0.00 | 0.3213 | A | α | 0.49 ± 0.09 | 0.5663 | E | β | −5.53 ± 0.02 | 0.8155 | C | α | 0.30 ± 0.06 | 0.4808 | D | β | 0.64 ± 0.17 | 0.8378 | B | α | |
Grape-skin | 0.08 ± 0.00 | 0.8542 | E | β | −1.59 ± 0.00 | 0.9498 | C | αβ | 0.87 ± 0.05 | 0.7500 | DE | β | −5.26 ± 0.04 | 0.7940 | B | α | 1.35 ± 0.05 | 0.9959 | C | αβ | −0.63 ± 0.07 | 0.8009 | C | α | |
Quebracho | 0.22 ± 0.00 | 0.9554 | B | α | −3.24 ± 0.00 | 0.9672 | E | β | 0.98 ± 0.27 | 0.9600 | D | α | −9.77 ± 0.02 | 0.7591 | D | αβ | 1.10 ± 0.19 | 0.9568 | C | αβ | 6.46 ± 0.12 | 0.7987 | A | α | |
Gallotannin | 0.38 ± 0.00 | 0.9999 | A | αβ | −5.22 ± 0.00 | 0.9994 | F | αβ | 6.88 ± 0.04 | 0.9945 | A | α | −19.07 ± 0.02 | 0.9829 | F | α | 6.39 ± 0.08 | 0.9990 | A | αβ | −4.09 ± 0.09 | 0.9986 | E | α | |
Ellagitannin | 0.16 ± 0.00 | 0.9893 | C | αβ | −2.72 ± 0.00 | 0.9840 | D | αβ | 2.80 ± 0.14 | 0.9932 | B | α | −16.45 ± 0.07 | 1.0000 | E | αβ | 2.05 ± 0.10 | 0.9590 | B | β | −2.25 ± 0.46 | 0.9998 | D | α | |
EtOH 14 | (−)-Epicatechin | 0.09 ± 0.00 | 0.9980 | C | β | −1.17 ± 0.00 | 0.9937 | B | α | 1.75 ± 0.02 | 0.9977 | C | α | −6.97 ± 0.00 | 0.9963 | B | αβ | 1.60 ± 0.02 | 0.9972 | C | β | −1.08 ± 0.02 | 0.9967 | B | αβ |
Grape-seed | 0.06 ± 0.00 | 0.9954 | E | β | −0.83 ± 0.00 | 0.9868 | A | αβ | 1.52 ± 0.02 | 0.9834 | D | αβ | −35.41 ± 0.00 | 0.8453 | F | β | 1.02 ± 0.02 | 0.9999 | E | αβ | −4.28 ± 0.03 | 0.8536 | D | β | |
Grape-skin | 0.09 ± 0.00 | 0.9133 | C | αβ | −1.44 ± 0.00 | 0.9651 | D | α | 1.32 ± 0.01 | 0.8271 | E | αβ | −5.70 ± 0.02 | 0.9218 | A | αβ | 1.20 ± 0.01 | 0.8127 | D | β | −0.87 ± 0.06 | 0.9251 | A | αβ | |
Quebracho | 0.06 ± 0.00 | 0.7889 | D | β | −1.35 ± 0.00 | 0.7311 | C | α | 1.07 ± 0.03 | 0.9791 | F | α | −9.21 ± 0.01 | 0.9875 | C | α | 0.87 ± 0.02 | 0.9530 | F | β | −1.14 ± 0.04 | 0.9588 | B | αβ | |
Gallotannin | 0.34 ± 0.00 | 0.9982 | A | β | −4.52 ± 0.00 | 0.9993 | F | α | 6.91 ± 0.03 | 0.9981 | A | α | −20.86 ± 0.02 | 0.9644 | E | αβ | 6.11 ± 0.03 | 0.9974 | A | β | −4.23 ± 0.08 | 0.9969 | D | αβ | |
Ellagitannin | 0.14 ± 0.00 | 0.9328 | B | β | −2.23 ± 0.00 | 0.9516 | E | α | 2.89 ± 0.01 | 0.9764 | B | α | −16.15 ± 0.03 | 0.9745 | D | α | 2.44 ± 0.00 | 0.9680 | B | αβ | −2.47 ± 0.10 | 0.9898 | C | α |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignault, A.; Gombau, J.; Pascual, O.; Jourdes, M.; Moine, V.; Canals, J.M.; Zamora, F.; Teissedre, P.-L. Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content. Molecules 2019, 24, 1448. https://doi.org/10.3390/molecules24081448
Vignault A, Gombau J, Pascual O, Jourdes M, Moine V, Canals JM, Zamora F, Teissedre P-L. Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content. Molecules. 2019; 24(8):1448. https://doi.org/10.3390/molecules24081448
Chicago/Turabian StyleVignault, Adeline, Jordi Gombau, Olga Pascual, Michael Jourdes, Virginie Moine, Joan Miquel Canals, Fernando Zamora, and Pierre-Louis Teissedre. 2019. "Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content" Molecules 24, no. 8: 1448. https://doi.org/10.3390/molecules24081448
APA StyleVignault, A., Gombau, J., Pascual, O., Jourdes, M., Moine, V., Canals, J. M., Zamora, F., & Teissedre, P. -L. (2019). Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content. Molecules, 24(8), 1448. https://doi.org/10.3390/molecules24081448