Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the PLE of Carotenoids from Porphyridium cruentum
2.2. Optimization of Downstream Valorization Processing
2.2.1. Pressurized Aqueous Extractions (Steps 1 and 2)
2.2.2. Pressurized Ethanol Extraction (Step 3)
2.2.3. Selection of Final Downstream Processing Conditions and Characterization of Extracts
3. Materials and Methods
3.1. Samples and Reagents
3.2. Pressurized Liquid Extraction
3.2.1. Equipment
3.2.2. Optimization of the Carotenoids Extraction from P. cruentum
3.2.3. Sequential Process for the Downstream Valorization of P. cruentum
3.2.4. Conventional Extraction Methods
3.3. Total Carotenoids Determination
3.4. Identification and Quantification of Carotenoids by Liquid Chromatography Coupled to Mass Spectrometry
3.5. Determination of B-Phycoerythrin
3.6. Determination of Carbohydrates and Sulfated Polysaccharides
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhalamurugan, G.L.; Valerie, O.; Mark, L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ. Eng. Res. 2018, 23, 229–241. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Sayre, R. Microalgae: The Potential for Carbon Capture. Bioscience 2010, 60, 722–727. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.-W.; Hu, I.-C.; Chen, C.-Y.; Ho, S.-H.; Lee, D.-J.; Chang, J.-S. Microalgae-based biorefinery – From biofuels to natural products. Bioresour. Technol. 2013, 135, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52015DC0614 (accessed on 19 April 2019).
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef]
- Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; van den Broek, L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chem. 2015, 17, 4599–4609. [Google Scholar] [CrossRef]
- Gilbert-López, B.; Mendiola, J.A.; van den Broek, L.A.M.; Houweling-Tan, B.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017, 24, 111–121. [Google Scholar] [CrossRef]
- Herrero, M.; Sánchez-Camargo, A.; del, P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Castro-Puyana, M.; Herrero, M.; Urreta, I.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E.; Suárez-Alvarez, S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4607–4616. [Google Scholar] [CrossRef] [Green Version]
- Mulbry, W.; Kondrad, S.; Buyer, J.; Luthria, D.L. Optimization of an Oil Extraction Process for Algae from the Treatment of Manure Effluent. J. Am. Oil Chem. Soc. 2009, 86, 909–915. [Google Scholar] [CrossRef]
- Plaza, M.; Santoyo, S.; Jaime, L.; García-Blairsy Reina, G.; Herrero, M.; Señoráns, F.J.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 2010, 51, 450–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Gaignard, C.; Gargouch, N.; Dubessay, P.; Delattre, C.; Pierre, G.; Laroche, C.; Fendri, I.; Abdelkafi, S.; Michaud, P. New horizons in culture and valorization of red microalgae. Biotechnol. Adv. 2019, 37, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Rebolloso Fuentes, M.; Acién Fernández, G.; Sánchez Pérez, J.; Guil Guerrero, J. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 2000, 70, 345–353. [Google Scholar] [CrossRef]
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef]
- Feller, R.; Matos, Â.P.; Mazzutti, S.; Moecke, E.H.S.; Tres, M.V.; Derner, R.B.; Oliveira, J.V.; Junior, A.F. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; Stinco, C.M. The colourless carotenoids phytoene and phytofluene: From dietary sources to their usefulness for the functional foods and nutricosmetics industries. J. Food Compos. Anal. 2018, 67, 91–103. [Google Scholar] [CrossRef]
- Dvir, I.; Stark, A.H.; Chayoth, R.; Madar, Z.; Arad, S.M. Hypocholesterolemic Effects of Nutraceuticals Produced from the Red Microalga Porphyridium sp. in Rats. Nutrients 2009, 1, 156–167. [Google Scholar] [CrossRef]
- Xiao, R.; Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Raposo, M.; de Morais, R.; Bernardo de Morais, A. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Health Benefits of Algal Polysaccharides in Human Nutrition. Adv. Food Nutr. Res. 2012, 66, 75–145. [Google Scholar] [PubMed]
- Huheihel, M.; Ishanu, V.; Tal, J.; Arad, S. (Malis) Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J. Biochem. Biophys. Methods 2002, 50, 189–200. [Google Scholar] [CrossRef]
- Le Guillard, C.; Dumay, J.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.-Y.; Fleurence, J.; Bergé, J.-P. Ultrasound-assisted extraction of R-phycoerythrin from Grateloupia turuturu with and without enzyme addition. Algal Res. 2015, 12, 522–528. [Google Scholar] [CrossRef]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Marcati, A.; Ursu, A.V.; Laroche, C.; Soanen, N.; Marchal, L.; Jubeau, S.; Djelveh, G.; Michaud, P. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014, 5, 258–263. [Google Scholar] [CrossRef]
- Guihéneuf, F.; Stengel, D.B. Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res. 2015, 10, 152–163. [Google Scholar] [CrossRef]
- Bermejo Román, R.; Alvárez-Pez, J.M.; Acién Fernández, F.G.; Molina Grima, E. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotechnol. 2002, 93, 73–85. [Google Scholar] [CrossRef]
- Geresh, S.; Arad, S.; Levy-Ontman, O.; Zhang, W.; Tekoah, Y.; Glaser, R. Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr. Res. 2009, 344, 343–349. [Google Scholar] [CrossRef]
- Esteves, A.I.S.; Nicolai, M.; Humanes, M.; Goncalves, J. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity. Mar. Drugs 2011, 9, 139–153. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the lyophilized P. cruentum microalgae are available from the authors. |
Extraction Temperature (°C) | Extraction Yield (%) | Total Carotenoids (mg g−1 Extract) | Zeaxanthin (mg g−1 Extract) |
---|---|---|---|
50 | 3.12 ± 0.21 a | 35.41 ± 0.15 | 12.29 ± 2.13 a |
75 | 4.13 ± 0.16 a | 36.09 ± 3.95 | 13.85 ± 0.76 a |
100 | 6.42 ± 0.62 b | 39.11 ± 1.96 | 12.48 ± 2.89 a |
125 | 9.00 ± 0.67 c | 43.15 ± 0.84 | 19.11 ± 4.33 a |
150 | 11.36 ± 0.11 d | 38.22 ± 3.14 | 4.87 ± 0.18 b |
Extraction Temperature (°C) | Extraction Yield (%) | Total Phycoerythrin (mg g−1 Extract) | Total Carbohydrates (mg g−1 Extract) | Sulfated Polysaccharides (mg g−1 Extract) |
---|---|---|---|---|
Step 1 | ||||
25 | 3.03 ± 0.19 a | 13.21 ± 0.77 a | 83.57 ± 11.78 a | 8.88 ± 0.85 a |
Step 2 | ||||
25 | 3.06 ± 0.06 a | 25.02 ± 2.89 b | 97.17 ± 6.65 a,b | 10.22 ± 0.14 a,b |
50 | 4.81 ± 0.04 b | 16.51 ± 0.21 b | 106.34 ± 11.63 a,b,c | 9.80 ± 0.21 a,b |
100 | 6.51 ± 0.20 c | 5.99 ± 0.35 a,c | 108.53 ± 4.47 a,b,c | 9.94 ± 0.24 a,b |
150 | 11.12 ± 0.26 d | 4.28 ± 0.10 c | 122.97 ± 5.61 c | 11.47 ± 0.74 b |
Extraction Temperature (°C) in Step 2 | Extraction Yield (%) | Total Carotenoids (mg g−1 Extract) | Zeaxanthin (mg g−1 Extract) | β-carotene (mg g−1 Extract) |
---|---|---|---|---|
25 | 8.34 ± 0.08 a,b | 41.53 ± 1.74 a | 14.09 ± 0.30 a | 6.53 ± 0.25 a |
50 | 8.12 ± 0.88 a,b | 40.71 ± 1.79 a | 13.14 ± 0.21 a,b | 7.71 ± 0.93 a |
100 | 7.70 ± 0.51 b | 29.43 ± 2.20 b | 13.71 ± 2.74 a,b | 6.51 ± 1.55 a |
150 | 8.59 ± 0.40 a,b | 28.97 ± 0.25 b | 6.67 ± 0.66 b | 1.55 ± 0.42 b |
Peak # | Identification | tR (min) | UV–Vis Maxima (nm) | [M + H]+ m/z | Main Fragments Observed (MS/MS) |
---|---|---|---|---|---|
1 | Chlorophyll-derivative | 14.63 | 426, 663 | 616.2 | |
2 | Chlorophyll-derivative | 15.02 | 425, 663 | 647.7 | |
3 | Chlorophyll-derivative | 15.75 | 434, 670 | 664.0 | |
4 | Chlorophyll-derivative | 16.09 | 438, 670 | 617.8 | 313.9, 288.0 |
5 | Zeaxanthin * | 18.07 | 420s, 450, 476 | 569.5 | 551.9 |
6 | Zeaxanthin isomer | 21.42 | 422s, 445, 472 | 579.8 | |
7 | Chlorophyll-derivative | 24.86 | 450, 478, 674 | 718.6 | 593.5, 453.4 |
8 | Pheophytin a’ | 31.30 | 373s, 409, 666 | 872.3 | 594.7 |
9 | Pheophytin b | 31.78 | 373s, 409, 666 | 885.5 | |
10 | β-carotene * | 33.31 | 430s, 450, 475 | 537.5 | |
11 | Carotenoid | 35.28 | 422s, 446, 472 | 665.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego, R.; Martínez, M.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules 2019, 24, 1564. https://doi.org/10.3390/molecules24081564
Gallego R, Martínez M, Cifuentes A, Ibáñez E, Herrero M. Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules. 2019; 24(8):1564. https://doi.org/10.3390/molecules24081564
Chicago/Turabian StyleGallego, Rocío, Marina Martínez, Alejandro Cifuentes, Elena Ibáñez, and Miguel Herrero. 2019. "Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass" Molecules 24, no. 8: 1564. https://doi.org/10.3390/molecules24081564
APA StyleGallego, R., Martínez, M., Cifuentes, A., Ibáñez, E., & Herrero, M. (2019). Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules, 24(8), 1564. https://doi.org/10.3390/molecules24081564