Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of 0.4Li2MnO3∙0.6LiNi1/3Co1/3Mn1/3O2 (LLO)
3.2. Synthesis of modified LLO (LLO@rGO)
3.3. Characterization
3.4. Electrochemical Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luo, W.B.; Wen, L.; Luo, H.Z.; Song, R.S.; Zhai, Y.C.; Liu, C.; Li, F. Carbon nanotube-modified LiFePO4 for high rate lithium ion batteries. New Carbon Mater. 2014, 29, 287–294. [Google Scholar] [CrossRef]
- Wen, L.; Hu, X.; Luo, H.; Li, F.; Cheng, H. Open-pore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries. Particuology 2015, 22, 24–29. [Google Scholar] [CrossRef]
- Rapulenyane, N.; Ferg, E.; Luo, H. High-performance Li1.2Mn0.6Ni0.2O2 cathode materials prepared through a facile one-pot co-precipitation process for lithium ion batteries. J. Alloys Compd. 2018, 762, 272–281. [Google Scholar] [CrossRef]
- Shen, Z.; Li, D. Influence of lithium content on the structural and electrochemical properties of Li1.20+xMn0.54Ni0.13Co0.13O2 cathode materials for Li-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 13257–13266. [Google Scholar] [CrossRef]
- Li, G.R.; Feng, X.; Ding, Y.; Ye, S.H.; Gao, X.P. AlF3-coated Li (Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim. Acta 2012, 78, 308–315. [Google Scholar] [CrossRef]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Browning, N.D. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2012, 7, 760–767. [Google Scholar] [CrossRef]
- Su, N.; Lyu, Y.; Gu, R.; Guo, B. Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J. Alloys Compd. 2018, 741, 398–403. [Google Scholar] [CrossRef]
- Zheng, J.; Gu, M.; Xiao, J.; Polzin, B.J.; Yan, P.; Chen, X.; Zhang, J.G. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials. Chem. Mater. 2014, 26, 6320–6327. [Google Scholar] [CrossRef]
- He, L.; Xu, J.; Han, T.; Han, H.; Wang, Y.; Yang, J.; Zhang, Y. SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram. Int. 2017, 43, 5267–5273. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, R.; Gong, Y.; Wang, M.; Chen, Y.; Chu, M.; Chen, L. Effects of doping Al on the structure and electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials. Ionics 2018, 24, 967–976. [Google Scholar] [CrossRef]
- Yu, T.; Li, J.; Xu, G.; Li, J.; Ding, F.; Kang, F. Improved cycle performance of Li [Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ion. 2017, 301, 64–71. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Liu, H.; Yuan, X.; Xia, Y. Excellent rate capability of Mg doped Li [Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim. Acta 2014, 136, 19–26. [Google Scholar] [CrossRef]
- Wei, G.Z.; Lu, X.; Ke, F.S.; Huang, L.; Li, J.T.; Wang, Z.X.; Sun, S.G. Crystal habit-tuned nanoplate material of Li [Li1/3–2x/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Cui, X.; Lei, J.; Lin, X.; Zhao, S.; Wu, Q.H.; Dong, Q. Hollow spherical lithium-rich layered oxide cathode material with suppressed voltage fading. Electrochim. Acta 2018, 264, 260–268. [Google Scholar] [CrossRef]
- Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943–956. [Google Scholar] [CrossRef]
- Prakasha, K.R.; Sathish, M.; Bera, P.; Prakash, A.S. Mitigating the surface degradation and voltage decay of Li1.2Ni0.13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3. ACS Omega 2017, 2, 2308–2316. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, W.; Xue, M.; Xie, Z.; Zhao, D.; Zhang, M.; Cao, T. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 2010, 55, 5813–5818. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Paek, S.M.; Yoo, E.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2008, 9, 72–75. [Google Scholar] [CrossRef]
- Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Aksay, I.A. Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914. [Google Scholar] [CrossRef]
- Liu, H.; Gao, J.; Xue, M.; Zhu, N.; Zhang, M.; Cao, T. Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 2009, 25, 12006–12010. [Google Scholar] [CrossRef]
- Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378–8384. [Google Scholar] [CrossRef]
- Lee, J.K.; Smith, K.B.; Hayner, C.M.; Kung, H.H. Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.W.; Li, F.; Zhang, L.; Li, N.; Wu, Z.S.; Cheng, H. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313. [Google Scholar] [CrossRef]
- Nitti, A.; Bianchi, G.; Po, R.; Swager , T.M.; Pasini , D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic π-scaffolds. J. Am. Chem. Soc. 2017, 139, 8788–8791. [Google Scholar] [CrossRef]
- Pasini, D.; Takeuchi, D. Cyclopolymerizations: Synthetic tools for the precision synthesis of macromolecular architectures. Chem. Rev. 2018, 118, 8983–9057. [Google Scholar] [CrossRef]
- Li, W.; Wei, Z.; Huang, L.; Zhu, D.; Chen, Y. Plate-like LiFePO4/C composite with preferential (010) lattice plane synthesized by cetyltrimethylammonium bromide-assisted hydrothermal carbonization. J. Alloys Compd. 2015, 651, 34–41. [Google Scholar] [CrossRef]
- Taffarel, S.; Rubio, J. Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Miner. Eng. 2010, 23, 771–779. [Google Scholar] [CrossRef]
- Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J. Surface charge effects in protein adsorption on nanodiamonds. Nanoscale 2015, 7, 5726–5736. [Google Scholar] [CrossRef]
- Aramesh, M.; Tran, P.; Ostrikov, K.; Prawer, S. Conformal nanocarbon coating of alumina nanocrystals for biosensing and bioimaging. Carbon 2017, 122, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Fang, S.; Tamiya, Y.; Yang, L.; Hirano, S. Countering the Segregation of Transition-Metal Ions in LiMn1/3Co1/3Ni1/3O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries. Small 2016, 12, 4421–4430. [Google Scholar] [CrossRef]
- Lanz, P.; Villevieille, C.; Novák, P. Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1−x) LiMO2 (M = Ni, Co, Mn). Electrochim. Acta 2014, 130, 206–212. [Google Scholar] [CrossRef]
- Thackeray, M.; Kang, S.; Johnson, C.; Vaughey, J.; Benedek, R.; Hackney, S. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Lv, C.; Peng, Y.; Yang, J.; Liu, C.; Duan, X.; Ma, J.; Wang, T. A free-standing Li1.2Mn0.54Ni0.13Co0.13O2/MWCNT framework for high-energy lithium-ion batteries. Inorg. Chem. Front. 2018, 5, 3053–3060. [Google Scholar] [CrossRef]
- Luo, D.; Fang, S.; Yang, L.; Hirano, S.I. Preparation of layered-spinel microsphere/reduced graphene oxide cathode materials for ultrafast charge–discharge lithium-ion batteries. ChemSusChem 2017, 10, 4845–4850. [Google Scholar] [CrossRef]
- Huang, H.H.; Joshi, R.K.; De Silva, K.K.H.; Badam, R.; Yoshimura, M. Fabrication of reduced graphene oxide membranes for water desalination. J. Membr. Sci. 2019, 572, 12–19. [Google Scholar] [CrossRef]
- Wu, F.; Li, N.; Su, Y.; Zhang, L.; Bao, L.; Wang, J.; Chen, S. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014, 14, 3550–3555. [Google Scholar] [CrossRef]
- Song, B.; Lai, M.; Liu, Z.; Liu, H.; Lu, L. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 2013, 1, 9954–9965. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.; Stankovich, S.; Jung, I.; Field, D.; Ventrice, C.; et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Q.; Fang, J.; Wang, J.; Yang, J.; NuLi, Y. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 17965–17973. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S. Lithium-and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries. Adv. Energy Mater. 2016, 6, 1600906. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353–3358. [Google Scholar] [CrossRef]
- Chen, D.; Tu, W.; Chen, M.; Hong, P.; Zhong, X.; Zhu, Y.; Li, W. Synthesis and performances of Li-Rich@ AlF3@ Graphene as cathode of lithium ion battery. Electrochim. Acta 2016, 193, 45–53. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Wu, M.; Deng, L.; Ren, X.; Zhang, P. Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Mater. 2016, 112, 11–19. [Google Scholar] [CrossRef]
- Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 C by hybrid surface protection layers. Adv. Energy Mater. 2015, 5, 1500274. [Google Scholar] [CrossRef]
- Fan, Q.; Yang, S.; Liu, J.; Liu, H.; Lin, K.; Liu, R.; Hong, C.; Liu, L.; Chen, Y.; An, K.; et al. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources 2019, 421, 91–99. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Components | RΩ/Ω | Rct/Ω | Rtotal/Ω | Diffusion Coefficient/ 10−17cm2s−1 |
---|---|---|---|---|
LLO | 3.01 | 113.50 | 116.51 | 2.21 |
LLO@rGO 0.5% | 3.73 | 57.11 | 60.84 | 6.22 |
LLO@rGO 1.0% | 6.58 | 72.22 | 78.80 | 4.22 |
LLO@rGO 2.0% | 8.04 | 72.87 | 80.91 | 5.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Wang, F.; Wang, G.; Lv, C.; Wang, Z.; Duan, X.; Li, X. Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries. Molecules 2019, 24, 1680. https://doi.org/10.3390/molecules24091680
Liu D, Wang F, Wang G, Lv C, Wang Z, Duan X, Li X. Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries. Molecules. 2019; 24(9):1680. https://doi.org/10.3390/molecules24091680
Chicago/Turabian StyleLiu, Di, Fengying Wang, Gang Wang, Congjie Lv, Zeyu Wang, Xiaochuan Duan, and Xin Li. 2019. "Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries" Molecules 24, no. 9: 1680. https://doi.org/10.3390/molecules24091680
APA StyleLiu, D., Wang, F., Wang, G., Lv, C., Wang, Z., Duan, X., & Li, X. (2019). Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries. Molecules, 24(9), 1680. https://doi.org/10.3390/molecules24091680