A Biosensor-Based Quantitative Analysis System of Major Active Ingredients in Lonicera japonica Thunb. Using UPLC-QDa and Chemometric Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Sensor Chip Surface
2.2. Affinity of 3-CQA Inhibitors to TNF-α
2.3. Optimization of Chromatography and Comparison of Detection Conditions
2.4. Method Validation
2.4.1. Linearity, LOD, and LOQ
2.4.2. Stability, Precision, and Recoveries
2.5. Quantitative and Boxplot Analysis
2.6. Chemometric Analysis
Evaluation by Hierarchical Cluster Analysis (HCA)
3. Materials and Methods
3.1. Chemicals, Reagents, and Materials
3.2. Instrumentation
3.3. Immobilization of TNF-α on a SPR Sensor
3.4. Interactions between Small Molecules and TNF-α
3.5. Preparation of Samples
3.6. Standard Solution Preparation
3.7. Method Validation
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Han, Y.; Gao, Y.; He, T.; Wang, D.; Guo, N.; Zhang, X.; Wang, H. PD-1/PD-L1 inhibitor screening of caffeoylquinic acid compounds using surface plasmon resonance spectroscopy. Anal. Biochem. 2018, 547, 52–56. [Google Scholar] [CrossRef]
- Wang, Y.H.; Tang, J.G.; Wang, R.R.; Yang, L.M.; Dong, Z.J.; Du, L.; Zheng, Y.T. Flazinamide, a novel β-carboline compound with anti-HIV actions. Biochem. Bioph. Res. Co. 2007, 355, 1091–1095. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Y.; Zhang, H.; Lv, D.; Zhao, Y.; Liu, Y.; Chai, Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. J. Ethnopharmacol. 2018, 219, 359–368. [Google Scholar] [CrossRef]
- Liu, L. Efficient Hit and Lead Compound Evaluation Strategy Based on Off-Rate Screening by Surface Plasmon Resonance. J. Med. Chem. 2014, 57, 2843–2844. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Y.; Liang, X. Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens. Bioelectron. 2018, 109, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, H.; Yan, M.; Xing, X.; Guo, X.; Man, W.; Kuang, H. Comparison of Pharmacokinetics of Phytoecdysones and Triterpenoid Saponins of Monomer, Crude and Processed Radix Achyranthis bidentatae by UHPLC-MS/MS. Xenobiotica 2019, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Li, M.N.; Yang, H.; Li, P.; Gao, W. Rapid characterization of chemical markers for discrimination of Moutan Cortex and its processed products by direct injection-based mass spectrometry profiling and metabolomic method. Phytomedicine 2018, 45, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kong, W.; Zhou, Y.; Wei, J.; Yang, M. Evaluation and quantitative analysis of 11 compounds in Morinda officinalis using ultra-high performance liquid chromatography and photodiode array detection coupled with chemometrics. J. Sep. Sci. 2017, 40, 3996–4003. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, L.; Xing, X.; Yan, M.; Guo, X.; Yang, B.; Kuang, H. HPLC-PDA Combined with Chemometrics for Quantitation of Active Components and Quality Assessment of Raw and Processed Fruits of Xanthium strumarium L. Molecules 2018, 23, 243. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, L.; Xing, X.; Yan, M.; Guo, X.; Yang, B.; Kuang, H.X. Development of an analytical method for separation of phenolic acids by ultra-performance convergence chromatography (UPC2) using a column packed with a sub-2-μm particle. J. Pharm. Biomed. Anal. 2018, 153, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Yan, M.; Zhang, X.; Yang, L.; Jiang, H. Quantitative analysis of triterpenoids in different parts of Aralia elata (Miq.) Seem using HPLC–ELSD and their inhibition of human umbilical vein endothelial cell ox-LDL-induced apoptosis. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 984–990. [Google Scholar] [CrossRef]
- Shu, Z.; Li, X.; Rahman, K.; Qin, L.; Zheng, C. Chemical fingerprint and quantitative analysis for the quality evaluation of Vitex negundo seeds by reversed-phase high-performance liquid chromatography coupled with hierarchical clustering analysis. J. Sep. Sci. 2016, 39, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Gul, W.; Gul, S.W.; Chandra, S.; Lata, H.; Ibrahim, E.A.; El Sohly, M.A. Detection and Quantification of Cannabinoids in Extracts of Cannabis sativa Roots Using LC-MS/MS. Planta Med. 2018, 84, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Kormány, R.; Molnár, I.; Fekete, J. Renewal of an old European Pharmacopoeia method for Terazosin using modeling with mass spectrometric peak tracking. J. Pharm. Biomed. Anal. 2017, 135, 8–15. [Google Scholar] [CrossRef]
- Xing, J.; Zang, M.; Zhang, H.; Zhu, M. The application of high-resolution mass spectrometry-based data-mining tools in tandem to metabolite profiling of a triple drug combination in humans. Anal. Chim. Acta 2015, 897, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, H.; Yan, M.; Xing, X.; Guo, X.; Yang, B.; Kuang, H. UHPLC-MS/MS Quantification Combined with Chemometrics for Comparative Analysis of Different Batches of Raw, Wine-Processed, and Salt-Processed Radix Achyranthis bidentatae. Molecules 2018, 23, 758. [Google Scholar] [CrossRef]
- Holčapek, M.; Kolářová, L.; Nobilis, M. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal. Bioanal. Chem. 2008, 391, 59–78. [Google Scholar] [CrossRef]
- Bu, X.; Regalado, E.L.; Hamilton, S.E.; Welch, C.J. The emergence of low-cost compact mass spectrometry detectors for chromatographic analysis. TrAC Trends Anal. Chem. 2016, 82, 22–34. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; Chemical Industry Press: Beijing, China, 2015. [Google Scholar]
- Wang, Y.; Xiao, C.; Tian, L. Disscussion on herbal textual research on Flos lonicerae. China J. Chin. Mater. Med. 2010, 35, 1086. [Google Scholar]
- Seo, O.N.; Kim, G.S.; Park, S.; Lee, J.H.; Kim, Y.H.; Lee, W.S.; Shin, S.C. Determination of polyphenol components of Lonicera japonica Thunb. using liquid chromatography–tandem mass spectrometry: Contribution to the overall antioxidant activity. Food Chem. 2012, 134, 572–577. [Google Scholar] [CrossRef]
- Kang, M.; Jung, I.; Hur, J.; Kim, S.H.; Lee, J.H.; Kang, J.Y.; Lee, J.D. The analgesic and anti-inflammatory effect of WIN-34B, a new herbal formula for osteoarthritis composed of Lonicera japonica Thunb. and Anemarrhena asphodeloides BUNGE in vivo. J. Ethnopharmacol. 2010, 131, 485–496. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, F.; Ye, J. Determination of Phenolic Acids and Flavones in Lonicera japonica Thumb. by Capillary Electrophoresis with Electrochemical Detection. J. Electroanal. Chem. 2010, 17, 356–362. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Yao, X.H.; Duan, M.H.; Wei, F.Y.; Wu, G.H.; Li, L. Variation of essential oil content and antioxidant activity of Lonicera species in different sites of China. Ind. Crops Prod. 2015, 77, 772–779. [Google Scholar] [CrossRef]
- Murdaca, G.; Spanò, F.; Contatore, M.; Guastalla, A.; Penza, E.; Magnani, O.; Puppo, F. Infection risk associated with anti-TNF-α agents: A review. Expert Opin. Drug. Saf. 2015, 14, 571–582. [Google Scholar] [CrossRef]
- Wang, C.Y.; Mayo, M.W.; Baldwin, A.S. TNF-and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κB. Science 1996, 274, 784–787. [Google Scholar] [CrossRef]
- Cemazar, M.; Todorovic, V.; Scancar, J.; Lampreht, U.; Stimac, M.; Kamensek, U.; Sersa, G. Adjuvant TNF-α therapy to electrochemotherapy with intravenous cisplatin in murine sarcoma exerts synergistic antitumor effectiveness. Radiol. Oncol. 2015, 49, 32–40. [Google Scholar] [CrossRef]
- Gu, L. TNF-a (−238 G/A and −308 G/A) gene polymorphisms may not contribute to the risk of ischemic stroke. Int. J. Neurosci. 2015, 126, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, R.; Liu, C.Z. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep. Purif. Technol. 2008, 62, 480–483. [Google Scholar] [CrossRef]
- Kuixia, C.; Yingtao, Z.; Xiuwei, Y. Simultaneous quantification of ten phenolic acids in Lonicerae Japonicae Flos by HPLC-DAD. J. Chin. Pharm. Sci. 2013, 22, 521–526. [Google Scholar]
- Zhao, Y.; Dou, D.; Guo, Y.; Qi, Y.; Li, J.; Jia, D. Comparison of the Trace Elements and Active Components of Lonicera japonica flos and Lonicera flos Using ICP-MS and HPLC-PDA. Biol. Trace Elem. Res. 2018, 183, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 9–11 November 2005; pp. 11–12. [Google Scholar]
- Chunqiu, W.; Wenxia, L. Simultaneous determination of ten chemical constituents in Lonicera japonica Thunb. by RP-HPLC. Chin. Trad. Pat. Med. 2015, 37, 1973–1977. [Google Scholar]
- Miao, L.; Yongxiong, W. Determination of eight components in Lonicerae japonicae Flos by HPLC. Chin. Trad. Herbal Drugs 2014, 45, 1006–1010. [Google Scholar]
- Chen, C.Y.; Qi, L.W.; Li, H.J.; Li, P.; Yi, L.; Ma, H.L.; Tang, D. Simultaneous determination of iridoids, phenolic acids, flavonoids, and saponins in Flos Lonicerae and Flos Lonicerae japonicae by HPLC-DAD-ELSD coupled with principal component analysis. J. Sep. Sci. 2015, 30, 3181–3192. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, L.; Xing, X.; Yan, M.; Guo, X.; Yang, B.; Kuang, H.X. Chemometrics coupled with UPLC-MS/MS for simultaneous analysis of markers in the raw and processed Fructus Xanthii, and application to optimization of processing method by BBD design. Phytomedicine 2019, 57, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Bridges, C.C., Jr. Hierarchical cluster analysis. Psychol. Rep. 1966, 18, 851–854. [Google Scholar] [CrossRef]
Separation Methods | Analytes | Stationary Phases | Mobile Phases | T (min) | LOD (μg/mL) | Ref. |
---|---|---|---|---|---|---|
HPLC–DAD | 10 phenolic acids | AQ-C18 column 4.6 × 250 mm, 5 μm | Methanol and 0.1% aqueous formic acid | 55 | 0.01–0.05 | [31] |
RP–HPLC–DAD | 7 phenolic acids | Agilent C18 4.6 × 250 mm, 5 μm | Acetonitrile and 0.2% aqueous phosphoric acid | 60 | 0.02–1.58 | [34] |
HPLC–PDA | 7 phenolic acids | Luna 5 μm C18 4.6 × 250 mm, 5 μm | Methanol and 0.1% aqueous phosphoric acid | 60 | 0.02–0.08 | [35] |
HPLC–DA–ELSD | 6 phenolic acids | Agilent Zorbax ODS guard column 6.0 × 25 mm, 5 μm | Acetonitrile and 0.4% aqueous v/v acetic acid | 50 | 0.04–0.17 | [36] |
Peak No. | Analytes | Calibration Curves | R2 | Linear Ranges (μg/mL) | LOQ (μg/mL) | LOD (μg/mL) | Precisions (%, RSD) | Stability (%, RSD) | Recovery | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | Mean Recovery (%) | RSD (%) | ||||||||
1 | 3,4-dihydroxybenzoic acid | y = 12.26x + 7.06 | 0.9991 | 0.01–22.00 | 0.005 | 0.001 | 2.73 | 3.19 | 1.50 | 104.64 | 2.21 |
2 | 5-O-caffeoylquinic acid | y = 1.01x + 0.56 | 0.9995 | 1.20–23.50 | 0.34 | 0.11 | 4.80 | 4.54 | 2.77 | 105.13 | 3.10 |
3 | 3-O-caffeoylquinic acid | y = 0.57x + 0.77 | 0.9995 | 1.56–45.70 | 0.41 | 0.13 | 4.40 | 4.41 | 2.99 | 100.22 | 3.46 |
4 | caffeic acid | y = 4.17x + 1.57 | 0.9991 | 10.5–105.0 | 0.14 | 0.04 | 1.55 | 3.12 | 1.80 | 99.16 | 2.45 |
5 | 4-O-caffeoylquinic acid | y = 1.76x + 1.62 | 0.9991 | 6.50–65.00 | 0.06 | 0.02 | 1.37 | 3.68 | 2.00 | 102.98 | 3.58 |
7 | 3,5-O-dicaffeoylquinic acid | y = 6.43x + 0.66 | 0.9998 | 2.35–23.50 | 0.56 | 0.17 | 3.72 | 3.68 | 1.77 | 98.78 | 3.91 |
8 | luteoloside | y = 0.67x + 1.78 | 0.9991 | 3.47–34.70 | 0.30 | 0.09 | 2.26 | 3.47 | 2.31 | 102.77 | 2.67 |
9 | 3,4-O-dicaffeoylquinic acid | y = 0.79x + 0.41 | 0.9992 | 10.2–145.00 | 0.50 | 0.16 | 2.83 | 4.10 | 2.78 | 102.45 | 3.23 |
10 | rutin | y = 1.87x − 1.23 | 0.9991 | 8.83–22.07 | 0.19 | 0.05 | 1.86 | 2.92 | 2.96 | 99.69 | 2.44 |
11 | 4,5-O-dicaffeoylquinic acid | y = 4.24x + 1.00 | 0.9995 | 2.02–20.2 | 0.50 | 0.15 | 1.08 | 2.51 | 1.76 | 102.44 | 2.34 |
Peak No. | Analytes | Calibration Curves | R2 | Linear Ranges (μg/mL) | LOQ (μg/mL) | LOD (μg/mL) | Precisions (%, RSD) | Stability (%, RSD) | Recovery | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | Mean Recovery (%) | RSD (%) | ||||||||
1 | 3,4-dihydroxybenzoic acid | y = 1287.1x + 2760.3 | 0.9991 | 0.10–15.20 | 0.80 | 0.26 | 2.60 | 2.48 | 1.44 | 103.14 | 2.10 |
2 | 5-O-caffeoylquinic acid | y = 1487.1x + 3010.8 | 0.9991 | 2.26–22.60 | 1.06 | 0.34 | 0.59 | 3.23 | 2.74 | 101.77 | 3.07 |
3 | 3-O-caffeoylquinic acid | y = 1485.8x + 174.89 | 0.9992 | 1.56–15.60 | 1.21 | 0.41 | 2.00 | 4.40 | 2.48 | 97.24 | 3.15 |
4 | 4-O-caffeoylquinic acid | y = 1317.7x + 496.99 | 0.9999 | 1.33–13.35 | 0.06 | 0.02 | 1.14 | 1.93 | 1.66 | 101.78 | 3.38 |
5 | caffeic acid | y = 4782.7x + 319.78 | 0.9999 | 0.14–7.05 | 0.10 | 0.03 | 2.94 | 4.38 | 1.79 | 98.44 | 2.23 |
11 | 4,5-O-dicaffeoylquinic acid | y = 1612.1x − 424.03 | 0.9995 | 2.35–10.15 | 1.65 | 0.52 | 2.89 | 5.83 | 1.56 | 101.74 | 2.01 |
No. | Areas | Locations (Latitude, Longitude) | Contents of Investigated Components (n = 3, μg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | |||
R1 | Pingyi, Shandong | 35° 51 N, 117° 64 E | 46.80 ± 12.33 | 297.97 ± 41.69 | 63,147.59 ± 1345.4 | 79.00 ± 10.46 | 921.10 ± 49.40 | 122.44 ± 32.16 | 1326.08 ± 68.99 | 49,818.36 ± 232.26 | 1451.50 ± 50.22 | 1430.76 ± 40.73 |
R2 | Julu, Hebei | 37° 22 N, 115° 04 E | 299.48 ± 42.78 | 226.08 ± 56.91 | 30,373.36 ± 710.24 | 168.24 ± 26.39 | 1082.35 ± 259.47 | 20.00 ± 6.11 | 51.45 ± 4.01 | 46,757.00 ± 1484.57 | 416.03 ± 14.21 | 1170.78 ± 337.23 |
R3 | Zhengzhou, Henan | 34° 66 N, 114° 08 E | 30.94 ± 2.29 | 110.40 ± 4.80 | 20,692.08 ± 410.92 | 46.05 ± 8.72 | 390.18 ± 76.46 | 50.33 ± 2.68 | 789.27 ± 52.15 | 24,586.97 ± 858.41 | 1164.39 ± 20.39 | 847.60 ± 32.43 |
R4 | Weinan, Shanxi | 34° 50 N, 109° 45 E | 137.23 ± 13.45 | 271.44 ± 46.16 | 30,339.48 ± 1603.90 | 132.63 ± 14.49 | 791.90 ± 55.23 | 35.39 ± 4.24 | 269.55 ± 19.75 | 62,484.82 ± 713.87 | 101.30 ± 9.22 | 1685.51 ± 186.52 |
R5 | Wuhan, Hubei | 30° 18 N, 114° 96 E | 38.50 ± 9.56 | 88.43 ± 12.11 | 24,227.80 ± 1366.86 | 41.52 ± 14.14 | 264.83 ± 65.15 | 68.67 ± 2.56 | 1145.96 ± 75.00 | 26,599.83 ± 883.28 | 1325.01 ± 409.60 | 717.37 ± 13.78 |
R6 | Shaoyang, Hunan | 27° 23 N, 111° 46 E | 70.37 ± 17.13 | 121.53 ± 41.69 | 25,286.46 ± 558.17 | 74.62 ± 26.35 | 474.84 ± 46.04 | 74.24 ± 19.64 | 1099.91 ± 79.07 | 34,091.29 ± 728.19 | 1053.97 ± 24.82 | 998.62 ± 23.17 |
R7 | Nanchang, Jiangxi | 28° 70 N, 115° 83 E | 147.98 ± 34.73 | 180.17 ± 24.67 | 26,088.33 ± 796.36 | 94.34 ± 9.40 | 693.50 ± 87.45 | 24.50 ± 3.99 | 32. 69 ± 4.61 | 37,265.90 ± 615.11 | 15,740.65 ± 251.10 | 888.22 ± 29.96 |
R8 | Baise, Gaungxi | 23° 91 N, 106° 60 E | 243.42 ± 11.76 | 492.17 ± 11.14 | 41,481.32 ± 1295.01 | 194.94 ± 4.87 | 1371.60 ± 334.51 | 64.86 ± 1.10 | 1310.36 ± 70.01 | 89,976.03 ± 1060.17 | 161.14 ± 5.53 | 2598.15 ± 58.70 |
R9 | Meizhou, Guangdong | 24° 33 N, 116° 20 E | 159.37 ± 35.83 | 351.07 ± 79.29 | 32,244.27 ± 1469.74 | 181.09 ± 16.96 | 886.54 ± 105.04 | 39.18 ± 10.11 | 1387.61 ± 115.22 | 59,152.84 ± 1339.82 | 173.31 ± 25.31 | 1767.55 ± 550.20 |
R10 | Kunming, Yunnan | 24° 76 N, 102° 96 E | 25.65 ± 9.54 | 42.20 ± 4.68 | 29,870.24 ± 1057.21 | 89.14 ± 3.55 | 214.11 ± 27.56 | 842.08 ± 68.74 | 342.42 ± 19.64 | 69,825.26 ± 1012.28 | 1905.86 ± 210.44 | 1234.42 ± 21.85 |
Chemicals and Reagents | Sources |
---|---|
Recombinant human TNF-α protein | Novoprotein (Shanghai, China) |
Sensor chips (CM 5) | GE Healthcare Life Science (Uppsala, Sweden) |
Immobilization buffer (acetate to pH levels of 5.5, 5.0, 4.5, and 4.0) | |
PBS-P buffer (10 mM phosphate buffer containing 137 mM NaCl, 2.7 mM KCl, and 0.05% surfactant P20, with a pH of 7.4) | |
Regeneration solutions (10 mM NaOH) | |
Amine Coupling Kit (EDC and NHS; 1.0 M ethanolamine (pH of 8.5)) | |
Glycine 2.0 | |
Methanol (HPLC grade) | Fisher Scientific (Pittsbargh, PA, USA) |
Water | Hangzhou Wahaha group (Hangzhou, China) |
Formic acid | Dikma Co. (Richmond Hill, NY, USA) |
Internal standards (chloramphenicol) (purity ≥99.0%) | Sigma (St. Louis, MO, USA) |
3,4-dihydroxybenzoic acid (purity ≥99.0%) | Chengdu Must Bio-technology Co., Ltd. (Chengdu, China) |
Caffeic acid (purity ≥99.0%) | |
3-O-caffeoylquinic acid (purity ≥99.0%) | |
4-O-caffeoylquinic acid (purity ≥99.0%) | |
5-O-caffeoylquinic acid (purity ≥99.0%) | |
3,5-O-di-caffeoylquinic acid (purity ≥99.0%) | |
3,4-O-di-caffeoylquinic acid (purity ≥99.0%) | |
4,5-O-di-caffeoylquinic acid (purity ≥99.0%) | |
Rutin (purity ≥ 99.0%) | |
Luteoloside (purity ≥ 99.0%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Jiang, H.; Xing, X.; Yan, M.; Guo, X.; Man, W.; Hou, A.; Yang, L. A Biosensor-Based Quantitative Analysis System of Major Active Ingredients in Lonicera japonica Thunb. Using UPLC-QDa and Chemometric Analysis. Molecules 2019, 24, 1787. https://doi.org/10.3390/molecules24091787
Yang L, Jiang H, Xing X, Yan M, Guo X, Man W, Hou A, Yang L. A Biosensor-Based Quantitative Analysis System of Major Active Ingredients in Lonicera japonica Thunb. Using UPLC-QDa and Chemometric Analysis. Molecules. 2019; 24(9):1787. https://doi.org/10.3390/molecules24091787
Chicago/Turabian StyleYang, Lin, Hai Jiang, Xudong Xing, Meiling Yan, Xinyue Guo, Wenjing Man, Ajiao Hou, and Liu Yang. 2019. "A Biosensor-Based Quantitative Analysis System of Major Active Ingredients in Lonicera japonica Thunb. Using UPLC-QDa and Chemometric Analysis" Molecules 24, no. 9: 1787. https://doi.org/10.3390/molecules24091787
APA StyleYang, L., Jiang, H., Xing, X., Yan, M., Guo, X., Man, W., Hou, A., & Yang, L. (2019). A Biosensor-Based Quantitative Analysis System of Major Active Ingredients in Lonicera japonica Thunb. Using UPLC-QDa and Chemometric Analysis. Molecules, 24(9), 1787. https://doi.org/10.3390/molecules24091787