Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of TMP Analogs
2.2. Biological Assays
2.2.1. The Ethidium Bromide Assay—DNA-Binding Effects
2.2.2. Ethidium Displacement Assay—Determination of DNA-Binding Constants
2.2.3. Dihydrofolate Reductase (DHFR) Inhibition
2.2.4. Molecular Docking
3. Material and Methods
3.1. General Information
3.2. General Procedure
3.3. The Ethidium Bromide Assay—DNA-Binding Effects
3.4. The Ethidium Displacement Bromide Assay—Determination of DNA-Binding Constants
3.5. Dihydrofolate Reductase (DHFR) Inhibition Assay
3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol. 2006, 71, 941–948. [Google Scholar] [CrossRef]
- Chan, D.C.M.; Anderson, A.C. Towards species-specific antifolates. Curr. Med. Chem. 2006, 13, 377–398. [Google Scholar] [CrossRef]
- Champe, P.C.; Harvey, R.A. Lippincott’s Illustrated Reviews: Biochemistry, 2nd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1994. [Google Scholar]
- Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of medicinal chemistry, 4th ed.; Williams and Wilkins, Media: Philadelphia, PA, USA, 2005. [Google Scholar]
- Snapka, R.M.; Ge, S.; Trask, J.; Robertson, F. Unbalanced growth in mouse cells with amplified dhfr genes. Cell Prolif. 1997, 30, 385–399. [Google Scholar] [CrossRef]
- Wang, M.; Yanga, J.; Yuana, M. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential non-classical lipophilic antifolates targeting dihydrofolate reductase. Eur. J. Med. Chem. 2017, 128, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Blakley, R.L. Eukaryotic dihydrofolate reductase. Adv. Enzymol. Relat. Areas. Mol. Biol. 1995, 70, 23–102. [Google Scholar] [PubMed]
- Heaslet, H.; Harris, M.; Fahnoe, K.; Sarver, R.; Putz, H.; Chang, J.; Subramanyam, C.; Barreiro, G.; Miller, J.R. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins 2009, 76, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Wang, Y.; Chang, Z.; Yang, Y.; Pu, J.; Sun, T.; Kaur, S.; Sacchettini, J.C.; Jung, H.; Wong, W.L.; et al. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Sci. Rep. 2015, 5, 15328. [Google Scholar] [CrossRef] [PubMed]
- Rashid, N.; Thapliyal, C.; Chaudhuri, P. Dihydrofolate reductase as a versatile drug target in healthcare. JPP 2016, 7, 247–257. [Google Scholar]
- Bhosle, A.; Chandra, N. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities. FEBS J. 2016, 283, 1139–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selassie, C.D.; Li, R.-L.; Poe, M.; Hansch, C. Optimization of hydrophobic and hydrophilic substituent interactions of 2,4-diamino-5-(substituted-benzyl)pyrimidines with dihydrofolate reductase. J. Med. Chem. 1991, 34, 46–54. [Google Scholar] [CrossRef]
- Nammalwar, B.; Bourne, C.R.; Wakeham, N.; Bourne, P.C.; Barrow, E.W.; Muddala, N.P.; Bunce, R.A.; Berlin, K.D.; Barrow, W.W. Modified 2,4-diaminopyrimidine-based dihydrofolate reductase inhibitors as potential drug scaffolds against Bacillus anthracis. Bioorg. Med. Chem. 2014, 23, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.G.; Rosowsky, A. Dicyclic and Tricyclic Diaminopyrimidine Derivatives as Potent Inhibitors of Cryptosporidium parvum Dihydrofolate Reductase: Structure-Activity and Structure-Selectivity Correlations. Antimicrob. Agents Chemother. 2001, 45, 3293–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, B.; Skolnick, J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: Detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J. 2015, 282, 1922–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, H.C.; Biggadike, K.; McKilligin, E.; Kinsman, O.S.; Queener, S.F.; Lane, A.; E Smith, J. 6,7-disubstituted 2,4-diaminopteridines: novel inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob. Agents Chemother. 1996, 40, 1371–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, B.; Tonddast-Navaei, S.; Skolnick, J. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Eur. J. Med. Chem. 2015, 103, 600–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimondi, M.V.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019, 24, 1140. [Google Scholar] [CrossRef] [Green Version]
- Mc Carron, P.; Crowley, A.; O’Shea, D.; McCann, M.; Howe, O.; Hunt, M.; Devereux, M. Targeting the Folate Receptor: Improving Efficacy in Inorganic Medicinal Chemistry. Curr. Med. Chem. 2018, 25, 2675–2708. [Google Scholar] [CrossRef]
- Wróbel, A.; Drozdowska, D. Recent Design and Structure-Activity Relationship Studies on Modifications of DHFR Inhibitors as Anticancer Agents. Curr. Med. Chem. 2019, 26, 1. [Google Scholar] [CrossRef]
- Berman, E.M.; Werbel, L.M. The renewed potential for folate antagonists in contemporary cancer chemotherapy. J. Med. Chem. 1991, 34, 479–485. [Google Scholar] [CrossRef]
- Mullarkey, M.F.; Blumenstein, B.A.; Andrade, W.P.; Bailey, G.A.; Olason, I.; Wetzel, C.E. Methotrexate in the treatment of corticosteroid-dependent asthma. A double blind crossover study. N. Engl. J. Med. 1988, 318, 603–607. [Google Scholar] [CrossRef]
- Grivsky, E.M.; Lee, S.; Sigel, C.W.; Duch, D.S.; Nichol, C.A. Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethyloxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J. Med. Chem. 1980, 23, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Bavetsias, V.; Jackman, A.L.; Marriott, J.H.; Kimbell, R.; Gibson, W.; Boyle, F.T.; Bisset, G.M. Folate based inhibitors of thymidylate synthase. J. Med. Chem. 1997, 40, 1495–1510. [Google Scholar] [CrossRef] [PubMed]
- Bavetsias, V.; Marriott, J.H.; Melin, C.; Kimbell, R.; Matusiak, Z.S.; Boyle, F.T.; Jackman, A.L. Design and synthesis of cyclopenta[g]quinazoline-based antifolate as inhibitors of thymidylate synthase and potential antitumor agents. J. Med. Chem. 2000, 43, 1910–1926. [Google Scholar] [CrossRef] [PubMed]
- Werbel, L.M.; Degnan, M.J. Antimalarial drugs. 63. Synthesis and antimalarial and antitumor effects of 2-amino-4-(hydrazino and hydroxyamino)-6-[(aryl)thio]quinazolines. J. Med. Chem. 1987, 30, 2151–2154. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.L.; Feng, Y.P.; Jiang, Y.Y.; Liu, S.Y.; Ding, G.Y.; Li, R.T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolione derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett. 2005, 15, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Wyss, P.C.; Gerber, P.; Hartman, P.G.; Hubschwerlen, C.; Locher, H.; Marty, H.P.; Stahl, M. Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high- throughput synthesis and screening. J. Med. Chem. 2003, 46, 2304–2312. [Google Scholar] [CrossRef]
- Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat. 2014, 17, 89–95. [Google Scholar] [CrossRef]
- Drugs.com. Trimethoprim. Available online: https://www.drugs.com/pro/trimethoprim.html (accessed on 21 November 2019).
- Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim: A Review of itsantibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs 1982, 23, 405–430. [Google Scholar] [CrossRef]
- Sirotank, F.M.; Burchall, J.J.; Ensminger, W.B. Folate Antagonists as Therapeutic Agents; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and other non-classical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. 2019, 73, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Pedrola, M.; Jorba, M.; Jardas, E.; Jardi, F.; Ghashghaei, O.; Viñas, M.; Lavilla, R. Multicomponent Reactions Upon the Known Drug Trimethoprim as a Source of Novel Antimicrobial Agents. Front. Chem. 2019, 7, 475. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, M.; Sachdeva, S. Mechanism inspired the development of rationally designed dihydrofolate reductase inhibitors as anticancer agents. J. Med. Chem. 2012, 55, 6381–6390. [Google Scholar] [CrossRef] [PubMed]
- Algul, O.; Paulsen, J.L.; Anderson, A.C. 2,4-Diamino-5-(2′-aryl-propargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. J. Mol. Graph. Model. 2011, 29, 608–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas-Junior, C.; Barreiro, E.J.; Fraga, C.A.M. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Morphy, R.; Rankovic, Z. Designed Multiple Ligands. An Emerging Drug Discovery Paradigm. J. Med. Chem. 2005, 48, 6523–6543. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Fonseca, L.M. The benefits of the multi-target approach in drug design and discovery. Bioorg. Med. Chem. 2006, 14, 896–897. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Meegan, M.J. Designed multiple ligands for cancer therapy. Curr. Med. Chem. 2011, 18, 4722–4737. [Google Scholar]
- Finlay, A.C.; Hochstein, F.A.; Sobin, B.A. Netropsin, a new antibiotic producedby a Streptomyces. JACS 1951, 73, 341–343. [Google Scholar] [CrossRef]
- Berman, H.M.; Neidle, S.; Zimmer, C. Netropsin, a DNA-binding oligopeptidestructural and binding studies. Biochim. Biophys. Acta 1979, 561, 124–131. [Google Scholar] [CrossRef]
- Arcamone, F.; Lazzari, E.; Menozzi, M.; Soranzo, C.; A Verini, M. Synthesis, DNA binding and antiviral activity of distamycin analogues containing different heterocyclic moieties. Anti-Cancer Drug Des. 1986, 1, 124–131. [Google Scholar]
- Ong, C.W.; Yang, P.S. Minor-Groove Binding Agents: Rational Design of Carboxamide Bond Isosteres. Curr. Top. Med. Chem. 2015, 15, 1359–1371. [Google Scholar] [CrossRef]
- Sabry, M.A.; Ewida, H.A.; Hassan, G.S.; Ghaly, M.A.; El-Subbagh, H.I. Synthesis, antitumor testing and molecular modeling study of some new 6-substituted amido, azo or thioureido-quinazolin-4(3H)-ones. Bioorg. Chem. 2019, 88, 102923. [Google Scholar] [CrossRef]
- Szerszenowicz, J.; Drozdowska, D. Semi-Automatic Synthesis, Antiproliferative Activity and DNA-Binding Properties of New Netropsin and bis-Netropsin Analogues. Molecules 2014, 19, 11300–11315. [Google Scholar] [CrossRef] [Green Version]
- Drozdowska, D.; Rusak, M.; Miltyk, W.; Markowska, A.; Samczuki, P. Antiproliferative effects on breast cancer cells and some interactions of new distamycin analogues with dna, endonucleases and dna topoisomerases. Acta Pol. Pharm.-Drug Res. 2016, 73, 47–53. [Google Scholar]
- Morgan, A.R.; Lee, J.S.; Pulleyblank, D.E.; Murray, N.L.; Evans, D.H. Review: Ethidium fluorescence assays. Part 1. Physicochemical studies. Nucleic Acids Res. 1979, 7, 547. [Google Scholar] [CrossRef] [PubMed]
- Debart, F.; Periguad, C.; Gosselin, G.; Mrani, D.; Rayner, B.; Le Ber, P.; Auclair, C.; Balzarini, J.; De Clercq, E.; Paoletti, C. Synthesis, DNA binding, and biological evaluation of synthetic precursors and novel analogues of netropsin. J. Med. Chem. 1989, 32, 1074. [Google Scholar] [CrossRef] [PubMed]
- Lown, J.W. Newer approaches to the study of the mechanisms of action of antitumor antibiotics. Acc. Chem. Res. 1982, 15, 381. [Google Scholar] [CrossRef]
- Sigma Aldrich. Technical Bulletin. Available online: https://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Bulletin/cs0340bul.pdf (accessed on 21 November 2019).
- Francesconi, V.; Giovannini, L.; Santucci, M.; Cichero, E.; Costi, M.P.; Naesens, L.; Giordanetto, F.; Tonelli, M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur. J. Med. Chem. 2018, 155, 229–243. [Google Scholar] [CrossRef]
- Rana, R.M.; Rampogu, S.; Zeb, A.; Son, M.; Park, C.; Lee, G.; Yoon, S.; Baek, A.; Parameswaran, S.; Park, S.J.; et al. In Silico Study Probes Potential Inhibitors of Human Dihydrofolate Reductase for Cancer Therapeutics. J. Clin. Med. 2019, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Drozdowska, D. New solid phase synthesis of distamycin analogues. Molecules 2011, 16, 3066–3076. [Google Scholar]
- Pućkowska, A.; Drozdowska, D.; Midura-Nowaczek, K. Carbocyclic analogues of lexitropsin--DNA affinity and endonuclease inhibition. Acta Pol. Pharm. 2007, 64, 115. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cody, V.; Luft, J.; Pangborn, W. Understanding the Role of Leu22 Variants in Methotrexate Resistance: Comparison of Wild-type and Leu22Arg Variant Mouse and Human Dihydrofolate Reductase Ternary Crystal Complexes with Methotrexate and NADPH. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 147–155. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: No available. |
No. | Decrease of Fluorescence [%] | Kapp × 105 M−1 | DHFR Affinity kcal/mol | DHFR IC50 [µM] | |||
---|---|---|---|---|---|---|---|
Calf Thymus DNA | T4 DNA | Poly (dA-dT)2 | Poly (dG-dC)2 | ||||
EtBr | 100 | 100 | 100 | 95 b* | 99 | - | n.d. * |
NT | 74 | 8.7 | 8.3 | 875 | 2.5 | −9.6 | n.d. |
TMP | 100 | n.d. | n.d. | n.d. | n.d. | −7.5 | 55.26 |
MTX | 100 | n.d. | n.d. | n.d. | n.d. | −9.5 | 0.08 |
1 | 71.43 | 2.4 | 2.9 | 11.7 | 1.3 | −7.7 | 21.78 |
2 | 45.18 | 4.4 | 1.1 | 3.9 | 0.8 | −8.3 | 0.99 |
3 | 69.92 | 3.7 | 7.8 | 3.6 | 0.5 | −8.1 | 0.72 |
4 | 80.43 | 5.9 | 3.9 | 7.9 | 1.6 | −8.0 | 1.02 |
5 | 69.17 | 5.2 | 6.8 | 14 | 3.0 | −7.9 | 15.94 |
6 | 71.43 | 4.6 | 0.9 | 4.2 | 1.1 | −7.9 | 15.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, A.; Maliszewski, D.; Baradyn, M.; Drozdowska, D. Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs. Molecules 2020, 25, 116. https://doi.org/10.3390/molecules25010116
Wróbel A, Maliszewski D, Baradyn M, Drozdowska D. Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs. Molecules. 2020; 25(1):116. https://doi.org/10.3390/molecules25010116
Chicago/Turabian StyleWróbel, Agnieszka, Dawid Maliszewski, Maciej Baradyn, and Danuta Drozdowska. 2020. "Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs" Molecules 25, no. 1: 116. https://doi.org/10.3390/molecules25010116
APA StyleWróbel, A., Maliszewski, D., Baradyn, M., & Drozdowska, D. (2020). Trimethoprim: An Old Antibacterial Drug as a Template to Search for New Targets. Synthesis, Biological Activity and Molecular Modeling Study of Novel Trimethoprim Analogs. Molecules, 25(1), 116. https://doi.org/10.3390/molecules25010116