Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Hypolipidaemic Effect
2.3. Nitrogen Monoxide Release
2.4. Lipoxygenase Inhibitory Activity
2.5. Antioxidant and Radical Scavenging Activity
2.6. In Vivo Anti-Inflammatory Activity
3. Materials and Methods
3.1. General
3.2. Synthesis
3.2.1. 2-Nitrooxy-Ethanol [9]
3.2.2. General Procedures for the Synthesis of Compounds 1–9
3.3. Biological Evaluation
3.3.1. Effect on Plasma Cholesterol, Triglyceride and LDL-Cholesterol Levels
3.3.2. In Vitro NO Release
3.3.3. In Vitro Evaluation of Lipoxygenase Activity
3.3.4. In Vitro Lipid Peroxidation
3.3.5. In Vitro Interaction with the Stable Radical 1,1-Diphenyl-2-Picrylhydrazyl (DPPH)
3.3.6. Carrageenan-Induced Paw Oedema
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sánchez, A.; Calpena, A.C.; Clares, B. Evaluating the oxidative stress in inflammation: Role of melatonin. Int. J. Mol. Sci. 2015, 16, 16981–17004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickenig, G.; Bäumer, A.T.; Temur, Y.; Kebben, D.; Jockenhovel, F.; Bohm, M. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 1999, 100, 2131–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziona, P.; Theodosis-Nobelos, P.; Rekka, E.A. Medicinal Chemistry approaches of controlling gastrointestinal side effects of non-steroidal anti-inflammatory drugs. Endogenous protective mechanisms and drug design. Med. Chem. 2017, 13, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Rao, G.N. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Lipid Res. 2019, 73, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Hofker, M. Lipoxygenases at the heart of atherosclerosis susceptibility. Eur. J. Hum. Genet. 2004, 12, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.K.; Lieb, D.C.; Dobrian, A.D.; Nadler, J.L. 12- and 15-lipoxygenases in adipose tissue inflammation. Prostaglandins Other Lipid Mediat. 2013, 84, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, P.; Daiber, A.; Oelze, M.; Brandt, M.; Closs, E.; Xu, J.; Thum, T.; Bauersachs, J.; Ertl, G.; Zou, M.H.; et al. Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 2007, 198, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Ziakas, G.N.; Rekka, E.A.; Gavalas, A.M.; Eleftheriou, P.T.; Tsiakitzis, K.C.; Kourounakis, P.N. Nitric oxide releasing derivatives of tolfenamic acid with anti-inflammatory activity and safe gastrointestinal profile. Bioorg. Med. Chem. 2005, 13, 6485–6492. [Google Scholar] [CrossRef]
- Kaushal, M.; Kutty, N.G.; Rao, C.M. Nitrooxyethylation reverses the healing-suppressant effect of ibuprofen. Mediat. Inflamm. 2006, 2006, 24396. [Google Scholar] [CrossRef] [Green Version]
- Bézière, N.; Goossens, L.; Pommery, J.; Vezin, H.; Touati, N.; Hénichart, J.P.; Pommery, N. New NSAIDs-NO hybrid molecules with antiproliferative properties on human prostatic cancer cell lines. Bioorg. Med. Chem. Lett. 2008, 18, 4655–4657. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Anter, E.; Keaney, F. Oxidative stress, antioxidants, and endothelial function. Curr. Med. Chem. 2004, 11, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Tooulia, K.K.; Theodosis-Nobelos, P.; Rekka, E.A. Thiomorpholine derivatives with hypolipidemic and antioxidant activity. Arch. Pharm. (Weinheim) 2015, 348, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Korolenko, T.A.; Tuzikov, F.V.; Vasil’eva, E.D.; Cherkanova, M.S.; Tuzikova, N.A. Fractional composition of blood serum lipoproteins in mice and rats with Triton WR 1339-induced lipemia. Bull. Exp. Biol. Med. 2010, 149, 567–570. [Google Scholar] [CrossRef]
- Branchi, A.; Fiorenza, A.M.; Rovellini, A.; Torri, A.; Muzio, F.; Macor, S.; Sommariva, D. Lowering effects of four different statins on serum triglyceride level. Eur. J. Clin. Pharmacol. 1999, 55, 499–502. [Google Scholar] [CrossRef]
- Aji, W.; Ravalli, S.; Szabolcs, M.; Jiang, X.C.; Sciacca, R.R.; Michler, R.E.; Cannon, P.J. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation 1997, 95, 430–437. [Google Scholar] [CrossRef]
- Folcik, V.A.; Nivar-Aristy, R.A.; Krajewski, L.P.; Cathcart, M.K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J. Clin. Investig. 1995, 96, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Bushnell, E.A.C.; Berryman, V.E.J.; Gauld, J.W.; Boyd, R.J. The importance of the MM environment and the selection of the QM method in QM/MM calculations: Applications to enzymatic reactions. In Advances in Protein Chemistry and Structural Biology; Karabencheva-Christova, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 100, Chapter 6. [Google Scholar]
- Jacob, P.J.; Manju, S.L.; Ethiraj, K.R.; Elia, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci. 2018, 121, 356–381. [Google Scholar]
- Theodosis-Nobelos, P.; Kourounakis, P.N.; Rekka, E.A. Anti-inflammatory and hypolipidemic effect of novel conjugates with trolox and other antioxidant acids. Med. Chem. 2017, 13, 214–225. [Google Scholar] [CrossRef]
- Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Di Rosa, M.; Giroud, J.P.; Willoughby, D.A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 1971, 104, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Theodosis-Nobelos, P.; Tziona, P.; Poptsis, A.; Athanasekou, C.; Kourounakis, P.N.; Rekka, E.A. Novel polyfunctional esters of ibuprofen and ketoprofen with hypolipidemic, lipoxygenase inhibitory and enhanced anti-inflammatory activity. Med. Chem. Res. 2017, 26, 461–472. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Kourti, M.; Gavalas, A.; Rekka, E.A. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2016, 26, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Tsiakitzis, K.C.; Papagiouvannis, G.; Theodosis-Nobelos, P.; Tziona, P.; Kourounakis, P.N.; Rekka, E.A. Synthesis, antioxidant and anti-inflammatory effects of antioxidant acid amides with GABA and n-acyl-pyrrolidin-2-ones. Curr. Chem. Biol. 2017, 11, 127–139. [Google Scholar] [CrossRef]
- Gund, M.; Gaikwad, P.; Borhade, N.; Burhan, A.; Desai, D.C.; Sharma, A.; Dhiman, M.; Patil, M.; Sheikh, J.; Thakre, G.; et al. Gastric-sparing nitric oxide-releasable ‘true’ prodrugs of aspirin and naproxen. Bioorg. Med. Chem. Lett. 2014, 24, 5587–5592. [Google Scholar] [CrossRef]
- Cena, C.; Boschi, D.; Tron, G.C.; Chegaev, K.; Lazzarato, L.; Di Stilo, A.; Aragno, M.; Fruttero, R.; Gasco, A. Development of a new class of potential antiatherosclerosis agents: NO-donor antioxidants. Bioorg. Med. Chem. Lett. 2004, 14, 5971–5974. [Google Scholar] [CrossRef]
- López, G.V.; Batthyány, C.; Blanco, F.; Botti, H.; Trostchansky, A.; Migliaro, E.; Radi, R.; González, M.; Cerecetto, H.; Rubbo, H. Design, synthesis, and biological characterization of potential antiatherogenic nitric oxide releasing tocopherol analogs. Bioorg. Med. Chem. 2005, 13, 5787–5796. [Google Scholar] [CrossRef]
- López, G.V.; Blanco, F.; Hernández, P.; Ferreira, A.; Piro, O.E.; Batthyány, C.; González, M.; Rubbo, H.; Cerecetto, H. Second generation of alpha-tocopherol analogs-nitric oxide donors: Synthesis, physicochemical, and biological characterization. Bioorg. Med. Chem. 2007, 15, 6262–6272. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | Dose (i.p.) (μmol/kg) | % Reduction | ||
---|---|---|---|---|
TC a | TG b | LDL-C c | ||
1 | 150 | 62.2 ** | 30.1 ** | 80.0 * |
3 | 150 | 71.7 ** | 31.8 ** | 62.3 * |
4 | 150 | 78.2 *** | 38.9 *** | 84.6 *** |
5 | 150 | 46.6 ** | 40.2 *** | 57.8 *** |
6 | 150 | 70.9 *** | 54.4 *** | 74.8 *** |
7 | 150 | 65.5 ** | 45.7 *** | 60.6 * |
9 | 150 | 55.4 *** | 30.0 *** | 65.0 *** |
Simvastatin | 150 | 73.0 *** | - | 70.0 *** |
Ibuprofen | 300 | 41.0 *** | 38.0 *** | 41.6 *** |
Naproxen | 500 | 53.0 *** | 43.5 *** | 25.5 *** |
Compound | ΝΟ Release (μΜ)/Compound | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 7 | 9 | |
500 μM | 116 | 102 | 73 | 100 | 98 | 77 | 93 |
250 μM | 82 | 58 | 37 | 57 | 51 | 38 | 49 |
125 μM | 40 | 28 | 17 | 26 | 22 | 17 | 23 |
62.5 μM | 17 | 13 | 7 | 11 | 11 | 6.5 | 10 |
31.25 μM | 7 | 5 | 2.5 | 4 | 5 | 2 | 3 |
Compound | IC50 (μM) | clogP |
---|---|---|
1 | 46 | 4.65 |
2 | 24 | 5.92 |
3 | 107 | 5.15 |
4 | >>300 | 3.78 |
5 | 86 | 3.73 |
6 | 220 | 3.18 |
7 | 44 | 6.16 |
8 | 10.5 | 7.44 |
9 | 120 | 4.16 |
Ibuprofen | 200 | |
Ketoprofen | 220 | |
Trolox | >>300 | 3.10 |
NDGA | 1.3 |
Compound | Percent Interaction with DPPH | Inhibition of Lipid Peroxidation IC50 (μΜ) | ||
---|---|---|---|---|
200 μΜ | 100 μΜ | 50 μΜ | ||
7 | 87 | 49 | 21 | 41 |
8 | 88 | 57 | 23 | 150 |
9 | 92 | 90 | 55 | 2.3 |
Trolox | 92 | 90 | 38 | 25 |
Compound | % Oedema Reduction |
---|---|
1 | 76 ** |
2 | 53 * |
3 | 29 ** |
4 | 70 ** |
5 | 75 ** |
6 | 61 ** |
7 | 55 ** |
8 | 51 ** |
9 | 57 ** |
Ibuprofen | 36 * |
Indomethacin | 42 * |
Naproxen | 11 * |
Ketoprofen | 47 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodosis-Nobelos, P.; Papagiouvanis, G.; Pantelidou, M.; Kourounakis, P.N.; Athanasekou, C.; Rekka, E.A. Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents. Molecules 2020, 25, 19. https://doi.org/10.3390/molecules25010019
Theodosis-Nobelos P, Papagiouvanis G, Pantelidou M, Kourounakis PN, Athanasekou C, Rekka EA. Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents. Molecules. 2020; 25(1):19. https://doi.org/10.3390/molecules25010019
Chicago/Turabian StyleTheodosis-Nobelos, Panagiotis, Georgios Papagiouvanis, Maria Pantelidou, Panos N. Kourounakis, Chrysoula Athanasekou, and Eleni A. Rekka. 2020. "Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents" Molecules 25, no. 1: 19. https://doi.org/10.3390/molecules25010019
APA StyleTheodosis-Nobelos, P., Papagiouvanis, G., Pantelidou, M., Kourounakis, P. N., Athanasekou, C., & Rekka, E. A. (2020). Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents. Molecules, 25(1), 19. https://doi.org/10.3390/molecules25010019