Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of UHPLC Separation
2.2. Sample Preparation
2.2.1. Sample Preparation with Nitrogen Blowing
2.2.2. Selection of Filter Membrane
2.3. Method Validation and Application of the Method to Real Samples
2.3.1. UHPLC-PDA-CAD Chromatogram
2.3.2. Linear Ranges, Regression Equations, the Limit of Detection (LOD), the Limit of Quantization (LOQ), Repeatability and Reproducibility
2.3.3. Recoveries and Accuracy
2.4. Real Sample Analysis
3. Materials and Methods
3.1. Instrumentation and Reagents
3.2. Preparation of Standard Solutions and Samples
3.3. UHPLC-PDA-CAD Conditions
3.4. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DuBois, G.E.; Prakash, I. Non-Caloric Sweeteners, Sweetness Modulators, and Sweetener Enhancers. Annu. Rev. Food Sci. Technol. 2012, 3, 353–380. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as Food Additives in the Xxi Century: A Review of What Is Known, and What Is to Come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef]
- Ministry of Health of the People’s Republic of China; National Institute of Standards of the People’s Republic of China. National Standard of the People’s Republic of China GB7718-2004 of General Standard for the Labeling of Prepackaged Foods; Standard Press of China: Beijing, China, 2004. [Google Scholar]
- Ministry of Health of the People’s Republic of China; National Institute of Standards of the People’s Republic of China. National Standard of the People’s Republic of China GB2760-2014 of Hygienic Standards for Uses of Food Additives; Standard Press of China: Beijing, China, 2014. [Google Scholar]
- Ministry of Health of the People’s Republic of China; National Institute of Standards of the People’s Republic of China. National Standard of the People’s Republic of China GB 15037-2006 of Wine; Standard Press of China: Beijing, China, 2006. [Google Scholar]
- Ministry of Health of the People’s Republic of China; National Institute of Standards of the People’s Republic of China. National Standard of the People’s Republic of China GB2758-2012 of Hygienic Standard for Fermented Alcoholic Beverages; Standard Press of China: Beijing, China, 2012. [Google Scholar]
- Praveena, S.M.; Cheema, M.S.; Guo, H.-R. Non-Nutritive Artificial Sweeteners as an Emerging Contaminant in Environment: A Global Review and Risks Perspectives. Ecotox. Environ. Saf. 2019, 170, 699–707. [Google Scholar] [CrossRef]
- Luo, J.; Wu, L.; Zhang, Q.; Wu, Y.; Fang, F.; Feng, Q.; Li, C.; Xue, Z.; Cao, J. Review on the Determination and Distribution Patterns of a Widespread Contaminant Artificial Sweetener in the Environment. Environ. Sci. Pollut. Res. 2019, 26, 19078–19096. [Google Scholar] [CrossRef] [PubMed]
- Tighrine, A.; Amir, Y.; Alfaro, P.; Mamou, M.; Nerin, C. Simultaneous Extraction and Analysis of reservatives and Artificial Sweeteners in Juices by Salting out Liquid-Liquid Extraction Method Prior to Ultra-High Performance Liquid Chromatography. Food Chem. 2019, 277, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Guo, Y.Y.; Ye, M.L.; James, F.S. Separation and Simultaneous Determination of Four Artificial Sweeteners in Food and Beverages by Ion Chromatography. J. Chromatogr. A 2005, 1085, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, A.P.; Sanyal, M.; Shrivastav, P.S. Simultaneous Densitometric Determination of Eight Food Colors and Four Sweeteners in Candies, Jellies, Beverages and Pharmaceuticals by Normal-Phase High Performance Thin-Layer Chromatography Using a Single Elution Protocol. J. Chromatogr. A 2018, 1572, 152–161. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, Z.; Nie, W.; Guo, Y.; Huang, L. Gc-Ms Determination of Sucralose in Splenda. Chromatographia 2007, 66, 935–939. [Google Scholar] [CrossRef]
- Bergamo, A.B.; Fracassi da Silva, J.A.; de Jesus, D.P. Simultaneous Determination of Aspartame, Cyclamate, Saccharin and Acesulfame-K in Soft Drinks and Tabletop Sweetener Formulations by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Food Chem. 2011, 124, 1714–1717. [Google Scholar] [CrossRef]
- Garcia-Jimenez, J.F.; Valencia, M.C.; Capitan-Vallvey, L.F. Simultaneous Determination of Antioxidants, Preservatives and Sweetener Additives in Food and Cosmetics by Flow Injection Analysis Coupled to a Monolithic Column. Anal. Chim. Acta 2007, 594, 226–233. [Google Scholar] [CrossRef]
- Santini, A.O.; Lemos, S.C.; Pezza, H.R.; Carloni-Filho, J.; Pezza, L. Development of a Potentiometric Sensor for the Determination of Saccharin in Instant Tea Powders, Diet Soft Drinks and Strawberry Dietetic Jam. Microchem. J. 2008, 90, 124–128. [Google Scholar] [CrossRef]
- Paniagua-Vega, D.; Cavazos-Rocha, N.; Huerta-Heredia, A.A.; Parra-Naranjo, A.; Rivas-Galindo, V.M.; Waksman, N.; Saucedo, A.L. A Validated NMR Method for the Quantitative Determination of Rebaudioside a in Commercial Sweeteners. J. Food Compos. Anal. 2019, 79, 134–142. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Li, B.; Xu, X.-J.; Ren, H.-B.; Yin, J.-Y.; Zhu, H.; Zhang, Y.-H. Ftir Spectroscopy Coupled with Machine Learning Approaches as a Rapid Tool for Identification and Quantification of Artificial Sweeteners. Food Chem. 2020, 303, 125404–125415. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.C.O.L.; Sentanin, M.A.; De Souza, D. Analytical Methods in Food Additives Determination: Compounds with Functional Applications. Food Chem. 2019, 272, 732–750. [Google Scholar] [CrossRef] [PubMed]
- Wasik, A.; McCourt, J.; Buchgraber, M. Simultaneous Determination of Nine Intense Sweeteners in Foodstuffs by High Performance Liquid Chromatography and Evaporative Light Scattering Detection—Development and Single-Laboratory Validation. J. Chromatogr. A 2007, 1157, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wang, N.; Zhang, P.; Zhang, J.; Wu, S.; Zhu, Y. Simultaneous Determination of Sucralose and Related Compounds by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Food Chem. 2016, 204, 358–364. [Google Scholar] [CrossRef]
- Koyama, M.; Yoshida, K.; Uchibori, N.; Wada, I.; Akiyama, K.; Sasaki, T. Analysis of Nine Kinds of Sweeteners in Foods by LC/MS. J. Food Hyg. Soc. Jap. 2005, 46, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.Q.; Ma, J.Y.; Chen, B.; Zhang, Y.; Yao, S.Z. Determination of Cyclamate in Foods by High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Anal. Chim. Acta 2006, 555, 233–237. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhao, Y.G.; Shen, H.Y.; Jin, M.C. Application of Dispersive Solid-Phase Extraction and Ultra-Fast Liquid Chromatography-Tandem Quadrupole Mass Spectrometry in Food Additive Residue Analysis of Red Wine. J. Chromatogr. A 2012, 1263, 34–42. [Google Scholar] [CrossRef]
- Zygler, A.; Wasik, A.; Kot-Wasik, A.; Namiesnik, J. Determination of Nine High-Intensity Sweeteners in Various Foods by High-Performance Liquid Chromatography with Mass Spectrometric Detection. Anal. Bioanal. Chem. 2011, 400, 2159–2172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.G.; Cai, M.Q.; Chen, X.H.; Pan, S.D.; Yao, S.S.; Jin, M.C. Analysis of Nine Food Additives in Wine by Dispersive Solid-Phase Extraction and Reversed-Phase High Performance Liquid Chromatography. Food Res. Int. 2013, 52, 350–358. [Google Scholar] [CrossRef]
- Ma, K.; Li, X.J.; Wang, H.F.; Zhao, M. Rapid and Sensitive Method for the Determination of Eight Food Additives in Red Wine by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Food Anal. Method 2015, 8, 203–212. [Google Scholar] [CrossRef]
- Chang, C.S.; Yeh, T.S. Detection of 10 Sweeteners in Various Foods by Liquid Chromatography/Tandem Mass Spectrometry. J. Food Drug Anal. 2014, 22, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubica, P.; Namiesnik, J.; Wasik, A. Comparison of Hydrophilic Interaction and Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry for the Determination of Eight Artificial Sweeteners and Common Steviol Glycosides in Popular Beverages. J. Pharm. Biomed. Anal. 2016, 127, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Iwakoshi, K.; Tahara, S.; Uematsu, Y.; Yamajima, Y.; Miyakawa, H.; Monma, K.; Kobayashi, C.; Takano, I. Development of a Highly Sensitive Liquid Chromatography with Tandem Mass Spectrometry Method for the Qualitative and Quantitative Analysis of High-Intensity Sweeteners in Processed Foods. J. Chromatogr. A 2019, 1592, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Zygler, A.; Wasik, A.; Namiesnik, J. Analytical Methodologies for Determination of Artificial Sweeteners in Foodstuffs. Trac-Trend Anal. Chem. 2009, 28, 1082–1102. [Google Scholar] [CrossRef]
- Grembecka, M.; Baran, P.; Blazewicz, A.; Fijalek, Z.; Szefer, P. Simultaneous Determination of Aspartame, Acesulfame-K, Saccharin, Citric Acid and Sodium Benzoate in Various Food Products Using HPLC -CAD-UV/Dad. Eur. Food Res. Technol. 2014, 238, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.; Camara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [Green Version]
Analytes | tR ± S (min) | CAD | PDA (λ=226nm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resolution | Linear Ranges f | Linear Equation | γ2 | LOD | LOQ | Repeatability | Reproducibility | Linear Equation | γ2 | LOD | LOQ | Repeatability | Reproducibility | ||
ACS-K | 1.79 ± 0.09 | 8.67 | 1.0–50.0 | y = 0.0124 x + 0.0212 | 0.9946 | 0.36 | 1.06 | 2.4% | 3.1% | y = 1.275 x − 0.124 | 0.9998 | 0.16 | 0.50 | 1.1% | 1.2% |
SAC | 3.35 ± 0.02 | 6.89 | 2.0–50.0 | y = 0.0109 x + 0.0067 | 0.9937 | 0.77 | 2.07 | 2.1% | 3.0% | y = 1.183 x − 0.188 | 0.9999 | 0.22 | 0.60 | 0.9% | 1.3% |
CYC | 5.19 ± 0.03 | 19.9 | 1.0–50.0 | y = 0.0207 x + 0.0318 | 0.9963 | 0.32 | 0.95 | 3.1% | 3.6% | / g | / | / | / | / | / |
SCL | 9.82 ± 0.03 | 4.68 | 0.7–50.0 | y = 0.0202 x + 0.0446 | 0.9949 | 0.18 | 0.52 | 2.0% | 2.3% | / | / | / | / | / | / |
ASP | 10.55 ± 0.03 | 1.58 | 0.7-50.0 | y = 0.0237 x + 0.0523 | 0.9942 | 0.20 | 0.59 | 1.2% | 2.9% | / | / | / | / | / | / |
DUL | 10.80 ± 0.04 | 5.84 | 0.5-50.0 | y = 0.0265 x + 0.0524 | 0.9956 | 0.18 | 0.54 | 2.0% | 3.4% | y = 1.056 x − 0.050 | 0.9999 | 0.18 | 0.50 | 0.8% | 1.6% |
ALI | 11.72 ± 0.03 | 7.64 | 0.5–50.0 | y = 0.0285 x + 0.0531 | 0.9957 | 0.19 | 0.59 | 1.4% | 3.1% | / | / | / | / | / | / |
NHDC | 12.91 ± 0.07 | 11.9 | 0.5–50.0 | y = 0.0313 x + 0.0427 | 0.9963 | 0.16 | 0.53 | 1.6% | 2.9% | y = 0.771 x − 0.288 | 0.9993 | 0.21 | 1.01 | 1.0% | 1.7% |
NEO | 14.64 ± 0.06 | 3.51 | 0.5–50.0 | y = 0.0425 x + 0.0714 | 0.9953 | 0.16 | 0.49 | 1.5% | 3.0% | / | / | / | / | / | / |
Matrices | Analytes | LOD | LOQ | Ref | |
---|---|---|---|---|---|
UPLC-UV | juices | ACS-K | 0.75 μg/mL | NA | [9] |
ASP | 0.75 μg/mL | ||||
SAC | 0.30 μg/mL | ||||
HPLC-ELSD | canned fruits, yoghurt, energy drink | ACS-K | 13.0 μg/g | NA | [19] |
ALI | 2.0 μg/g | ||||
ASP | 10.0 μg/g | ||||
CYC | 1.0 μg/g | ||||
DUL | 6.0 μg/g | ||||
NHDC | 2.0 μg/g | ||||
NEO | 5.0 μg/g | ||||
SAC | 2.0 μg/g | ||||
SCL | 1.0 μg/g | ||||
HPLC-ELSD | commercial samples | SCL | 0.5 μg/mL | 2.0 μg/mL | [20] |
LCMS | food | ACS-K | NA | 1–5 μg/g | [21] |
SCL | |||||
SAC | |||||
CYC | |||||
ASP | |||||
DUL | |||||
LCMS (ion-pair) | food | CYC | 1 ng/mL | 5 ng/mL | [22] |
HPLC-CAD-UV/DAD | soft drinks | ASP | 0.08–0.20 μg/mL | 0.19–0.61 μg/mL | [32] |
ACS-K | |||||
SAC | |||||
UHPLC-PDA-CAD | white spirits | ACS-K | 0.36 μg/g | 1.06 μg/g | Present method |
ALI | 0.19 μg/g | 0.59 μg/g | |||
ASP | 0.20 μg/g | 0.59 μg/g | |||
CYC | 0.32 μg/g | 0.95 μg/g | |||
DUL | 0.18 μg/g | 0.54 μg/g | |||
NHDC | 0.16 μg/g | 0.53 μg/g | |||
NEO | 0.16 μg/g | 0.49 μg/g | |||
SAC | 0.77 μg/g | 2.07 μg/g | |||
SCL | 0.18 μg/g | 0.52 μg/g |
Analytes | Added (μg/g) | White Spirits 38° | White Spirits 46° | White Spirits 52° | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Found | Recovery | RSD | Found | Recovery | RSD | Found | Recovery | RSD | ||
ACS-K | 5.0 | 4.88 | 97.6% | 3.0% | 4.74 | 94.8% | 2.8% | 4.80 | 96.0% | 2.5% |
10.0 | 9.59 | 95.9% | 3.2% | 9.67 | 96.7% | 2.7% | 9.71 | 97.1% | 2.2% | |
40.0 | 38.49 | 96.2% | 2.9% | 38.18 | 95.4% | 2.5% | 39.04 | 97.6% | 2.1% | |
CYC | 5.0 | 5.23 | 104.5% | 3.6% | 5.12 | 102.5% | 3.4% | 5.25 | 104.9% | 2.9% |
10.0 | 10.20 | 102.0% | 3.8% | 10.28 | 102.8% | 3.2% | 10.21 | 102.1% | 3.0% | |
40.0 | 40.32 | 100.8% | 3.1% | 41.15 | 102.9% | 2.9% | 41.56 | 103.9% | 2.6% | |
SAC | 5.0 | 4.80 | 96.0% | 3.1% | 4.76 | 95.1% | 2.8% | 4.78 | 95.5% | 2.3% |
10.0 | 9.63 | 96.3% | 3.0% | 9.78 | 97.8% | 2.6% | 9.69 | 96.9% | 2.2% | |
40.0 | 39.64 | 99.1% | 3.3% | 40.33 | 100.8% | 3.0% | 40.25 | 100.6% | 2.3% | |
SCL | 5.0 | 4.99 | 99.8% | 2.9% | 5.04 | 100.8% | 2.2% | 4.98 | 99.5% | 2.3% |
10.0 | 9.96 | 99.6% | 2.7% | 10.02 | 100.2% | 2.8% | 9.95 | 99.5% | 2.6% | |
40.0 | 40.33 | 100.8% | 3.1% | 39.88 | 99.7% | 2.7% | 39.67 | 99.2% | 2.4% | |
ASP | 5.0 | 4.98 | 99.7% | 2.8% | 5.13 | 102.6% | 2.3% | 4.90 | 98.1% | 1.6% |
10.0 | 9.97 | 99.7% | 2.5% | 9.81 | 98.1% | 2.4% | 9.89 | 98.9% | 1.9% | |
40.0 | 39.00 | 97.5% | 2.7% | 38.62 | 96.5% | 2.4% | 39.24 | 98.1% | 2.0% | |
DUL | 5.0 | 4.86 | 97.1% | 3.3% | 4.72 | 94.3% | 2.3% | 4.82 | 96.3% | 2.7% |
10.0 | 10.01 | 100.1% | 3.0% | 9.82 | 98.2% | 2.9% | 9.62 | 96.2% | 2.6% | |
40.0 | 38.56 | 98.4% | 3.2% | 38.80 | 97.0% | 2.8% | 39.93 | 99.8% | 2.4% | |
ALI | 5.0 | 4.79 | 98.8% | 3.3% | 4.76 | 98.2% | 3.0% | 4.76 | 97.2% | 2.4% |
10.0 | 9.90 | 96.0% | 3.1% | 9.97 | 97.7% | 2.6% | 9.77 | 97.7% | 1.9% | |
40.0 | 38.76 | 97.0% | 3.4% | 39.07 | 97.7% | 2.9% | 38.88 | 97.3% | 2.3% | |
NHDC | 5.0 | 4.89 | 97.8% | 3.1% | 4.81 | 96.2% | 2.2% | 4.90 | 98.1% | 1.9% |
10.0 | 9.88 | 98.8% | 3.0% | 9.97 | 99.7% | 2.5% | 9.93 | 99.3% | 2.2% | |
40.0 | 39.39 | 98.5% | 3.3% | 39.01 | 97.5% | 2.6% | 39.08 | 97.7% | 2.3% | |
NEO | 5.0 | 4.91 | 98.2% | 2.9% | 4.79 | 95.9% | 2.6% | 4.96 | 99.1% | 1.8% |
10.0 | 9.69 | 96.9% | 3.3% | 9.81 | 98.1% | 2.7% | 9.82 | 98.2% | 2.1% | |
40.0 | 38.51 | 96.3% | 3.0% | 38.74 | 96.9% | 2.8% | 38.71 | 96.8% | 2.3% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Li, X.; Zhang, Y.; Liu, F. Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector. Molecules 2020, 25, 40. https://doi.org/10.3390/molecules25010040
Ma K, Li X, Zhang Y, Liu F. Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector. Molecules. 2020; 25(1):40. https://doi.org/10.3390/molecules25010040
Chicago/Turabian StyleMa, Kang, Xiaojia Li, Yiwen Zhang, and Fei Liu. 2020. "Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector" Molecules 25, no. 1: 40. https://doi.org/10.3390/molecules25010040
APA StyleMa, K., Li, X., Zhang, Y., & Liu, F. (2020). Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector. Molecules, 25(1), 40. https://doi.org/10.3390/molecules25010040