A New LC-MS/MS Method for Simultaneous and Quantitative Detection of Bisphenol-A and Steroids in Target Tissues: A Power Tool to Characterize the Interference of Bisphenol-A Exposure on Steroid Levels
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.2. Application of the Validated Method
3. Materials and Methods
3.1. Materials
3.2. Preparation of Standard Reference Materials and Control Samples
3.3. Experimental Design and Sample Collection
3.4. Extraction and Clean Up of Visceral Fat Mass
3.5. Extraction and Clean up of Testis
3.6. Instruments, Chromatographic and Mass Spectrometry/MS Conditions
3.7. Method Validation
3.7.1. Linearity
3.7.2. Limits of Detection (LOD) and Quantification (LOQ)
3.7.3. Process Efficiency
3.7.4. Precision
3.7.5. Interference and Carryover
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burridge, E. Bisphenol A: Product profile. Eur. Chem. News 2003, 17, 14–20. [Google Scholar]
- Sizonenko, P.C. Normal sexual maturation. Pediatrician 1987, 14, 191–201. [Google Scholar] [PubMed]
- Grossmann, M. Testosterone and glucose metabolism in men: Current concepts and controversies. J. Endocrinol. 2014, 220, 37–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauley, J.A. Estrogen and bone health in men and women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef]
- Mongraw-Chaffin, M.L.; Anderson, C.A.; Allison, M.A.; Ouyang, P.; Szklo, M.; Vaidya, D.; Woodward, M.; Golden, S.H. Association between sex hormones and adiposity: Qualitative, differences in women and men in the multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 2015, 100, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Khera, M. Male hormones and men’s quality of life. Curr. Opin. Urol. 2016, 26, 152–157. [Google Scholar] [CrossRef]
- Welshons, W.V.; Thayer, K.A.; Judy, B.M.; Taylor, J.A.; Curran, E.M.; Vom Saal, F.S. Large, effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic, activity. Environ. Health Perspect. 2003, 111, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Okada, H.; Tokunaga, T.; Liu, X.; Takayanagi, S.; Matsushima, A.; Shimohigashi, Y. Direct, evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ. Health Perspect. 2008, 116, 32–38. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Ropero, A.B.; Soriano, S.; Garcia-Arevalo, M.; Ripoll, C.; Fuentes, E.; Quesada, I.; Nadal, A. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol. Cell. Endocrinol. 2012, 355, 201–207. [Google Scholar] [CrossRef]
- Teng, C.; Goodwin, B.; Shockley, K.; Xia, M.; Huang, R.; Norris, J.; Merrick, B.A.; Jetten, A.M.; Austin, C.P.; Tice, R.R. Bisphenol A affects androgen receptor function via multiple mechanisms. Chem. Biol. Interact. 2013, 203, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Lee, K.; Choi, H.S. Endocrine disrupter bisphenol A induces orphan nuclear receptor Nur77 gene expression and steroidogenesisin mouse testicular Leydig cells. Endocrinology 2002, 143, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chang, H.; Wiseman, S.; He, Y.; Higley, E.; Jones, P.; Wong, C.K.; AL-Khedhairy, A.; Giesy, J.P.; Hecker, M. Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol. Sci. 2011, 121, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, B.; Hu, G.; Chu, Y.; Ge, R.S. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol. Lett. 2011, 207, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Guo, J.; Ge, R.S. Environmental pollutants and hydroxysteroid dehydrogenases. In Vitamins & Hormones; Academic Press: Cambridge, MA, USA, 2014; Volume 94, pp. 349–390. [Google Scholar]
- Gilibili, R.R.; Vogl, A.W.; Chang, T.K.; Bandiera, S.M. Localization of cytochrome P450 and related enzymes in adult rat testis and downregulation by estradiol and bisphenol A. Toxicol. Sci. 2014, 140, 26–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; Mcclachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 2007, 24, 178–198. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N. Non-monotonic dose responses in studies of endocrine disrupting chemicals: Bisphenol a as a case study. Dose Response 2013, 12, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Nunez, A.A.; Kannan, K.; Giesy, J.P.; Fang, J.; Clemens, L.G. Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 2001, 42, 917–922. [Google Scholar] [CrossRef]
- Rivas, A.M.; Fernandez, M.F.; Cerrillo, I.; Ibarluzea, J.; Olea-Serrano, M.F.; Pedraza, V.; Olea, N. Human exposure to endocrine disruptors: Standarization of a marker of estrogenicexposure in adipose tissue. APMIS 2001, 109, 1–13. [Google Scholar] [CrossRef]
- Fernandez, M.F.; Arrebola, J.P.; Taoufiki, J.; Navalón, A.; Ballesteros, O.; Pulgar, R.; Vilchez, J.L.; Olea, N. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 2007, 24, 259–264. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Lassen, T.H.; Frederiksen, H.; Jensen, T.K.; Petersen, J.H.; Joensen, U.N.; Main, K.M.; Skakkebaek, N.E.; Juul, A.; Jorgensen, N.; Andersson, A.M. Urinary Bisphenol A Levels in Young Men: Association with Reproductive Hormones and Semen Quality. Environ. Health Perspect. 2014, 122, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Xu, W.; Chen, J.; Shi, H.; Zhu, J.; Liu, X.; Wang, J.; Miao, M.; Yuan, W. The Association between Exposure to Environmental Bisphenol A and Gonadotropic Hormone Levels among Men. PLoS ONE 2017, 12, e0169217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adoamnei, E.; Mendiola, J.; Vela-Soriac, F.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.H.; Torres-Cantero, A.M. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ. Res. 2018, 161, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Rahhal, S.N.; Fuqua, J.S.; Lee, P.A. The impact of assay sensitivity in the assessment of diseases and disorders in children. Steroids 2008, 73, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Schulman, C.C.; Irani, J.; Morote, J.; Schalken, J.A.; Montorsi, F.; Chlosta, P.L.; Heidenreich, A. Testosterone measurement in patients with prostate cancer. Eur. Urol. 2010, 58, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Lonning, P.E. Estradiol measurement in translational studies of breast cancer. Steroids 2015, 99, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khera, M.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; Hatzimouratidis, K.; McCullough, A.; Morgentaler, A.; Torres, L.O.; Salonia, A. Diagnosis and Treatment of Testosterone Deficiency: Recommendations From the Fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex. Med. 2016, 13, 1787–1804. [Google Scholar] [CrossRef]
- Peavey, M.; Akbas, N.; Gibbons, W.; Zarutskie, P.; Devaraj, S. Optimization of Estradiol Assays to Improve Utility in an In Vitro Fertilization Setting. Ann. Clin. Biochem. 2018, 55, 113–120. [Google Scholar] [CrossRef]
- Rosner, W.; Auchus, R.J.; Azziz, R.; Sluss, P.M.; Raff, H. Position statement: Utility, limitations, and pitfalls in measuring testosterone: An Endocrine Society position statement. J. Clin. Endocrinol. Metab. 2007, 92, 405–413. [Google Scholar] [CrossRef]
- Demers, L.M. Testosterone and estradiol assays: Current and future trends. Steroids 2008, 73, 1333–1338. [Google Scholar] [CrossRef]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the measurement of estradiol: An endocrine society position statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demers, L.M.; Hankinson, S.E.; Haymond, S.; Key, T.; Rosner, W.; Santen, R.J.; Stanczyk, F.Z.; Vesper, H.W.; Ziegler, R.G. Measuring Estrogen Exposure and Metabolism: WorkshopRecommendations on Clinical Issues. J. Clin. Endocrinol. Metab. 2015, 100, 2165–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herati, A.S.; Cengiz, C.; Lamb, D.J. Assays of Serum Testosterone. Urol. Clin. N. Am. 2016, 43, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Eljarrat, E.; Lopez de Alda, M.J.; Barcelò, D. Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J. Chromatogr. A 2002, 974, 23–51. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Analysis of bisphenols in soft drinks by on-line solid phase extraction fast liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2011, 683, 227–233. [Google Scholar] [CrossRef]
- Nicolucci, C.; Rossi, S.; Menale, C.; Miraglia del Giudice, E.; Perrone, L.; Gallo, P.; Mita, D.G.; Diano, N. A high selective and sensitive liquid chromatography-tandem mass spectrometry method for quantization of BPA urinary levels in children. Anal. Bioanal. Chem. 2013, 405, 9139–9148. [Google Scholar] [CrossRef]
- Jurek, A.; Leitner, E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by LC-MS/MS. Food Add. Contam. 2019, 35, 2256–2269. [Google Scholar] [CrossRef]
- Nicolucci, C.; Errico, S.; Federico, A.; Dallio, M.; Loguercio, C.; Diano, N. Human exposure to Bisphenol A and liver health status: Quantification of Urinary and Circulating levels by LC-MS/MS. J. Pharm. Biom. Anal. 2017, 140, 105–112. [Google Scholar] [CrossRef]
- Errico, S.; Portaccio, M.; Nicolucci, C.; Meccariello, R.; Chianese, R.; Scafuro, M.; Lepore, M.; Diano, N. A novel experimental approach for liver analysis in rats exposed to Bisphenol A by means of LC-mass spectrometry and infrared spectroscopy. J. Pharm. Biom. Anal. 2019, 165, 207–212. [Google Scholar] [CrossRef]
- Ogura, T.; Watabe, Y.; Fujita, T.; Kubo, T.; Hosoya, K.; Kaya, K. Automated Pre-Treatment Technique for the Determination of Bisphenol A and 17β-Estradiol in River Water by Multi-Valve Column Switching LC/MS. Bunseki Kagaku 2009, 58, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Watabe, Y.; Hosoya, K.; Tanaka, N.; Kondo, T.; Morita, M.; Kubo, T. LC/MS determination of bisphenol A in river water using a surface-modified molecularly-imprinted polymer as an on-line pretreatment device. Anal. Bioanal. Chem. 2005, 381, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 830, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Van De Steene, J.C.; Lambert, W.E. Comparison of matrix effects in HPLC–MS/MSand UPLC–MS/MS analysis of nine basic pharmaceuticals in surface waters. J. Am. Soc. Mass Spectrom. 2008, 19, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gay, G.D.; Botelho, J.C.; Caudill, S.P.; Vesper, H.W. Total testosterone quantitative measurement in serum by LC-MS/MS. Clin. Chim. Acta 2014, 436, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Meccariello, R.; Chianese, R.; Chioccarelli, T.; Ciaramella, V.; Fasano, S.; Pierantoni, R.; Cobellis, G. Intra-testicular signals regulate germ cell progression and production of qualitatively mature spermatozoa in vertebrates. Front. Endocrinol. 2014, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Lee, J.K.; Cho, B. The Role of Androgen in the Adipose Tissue of Males. World J. Men’s Health 2013, 31, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Cacciola, G.; Chioccarelli, T.; Fasano, S.; Pierantoni, R.; Cobellis, G. Estrogens and spermiogenesis: New insights from type 1 cannabinoid receptor knockout mice. Int. J. Endocrinol. 2013, 2013, 501350. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Li, Y.; Dai, W.; Wei, C.D.; Sun, K.S.; Tong, Y.Q. Imbalance of testosterone/estradiol promotes male CHD development. Biomed. Mater. Eng. 2012, 22, 179–185. [Google Scholar] [CrossRef]
- Abhyankar, N.; Shoshany, O.; Niederberger, C. Testosterone to estradiol ratio correlates with sperm concentration improvement in hypogonadal oligozoosermic patients treated with anastrozole. Fertil. Steril. 2016, 106, e239–e240. [Google Scholar] [CrossRef]
- Schönfelder, G.; Wittfoht, W.; Hopp, H.; Talsness, C.E.; Paul, M.; Chahoud, I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ. Health Perspect. 2002, 110, A703–A707. [Google Scholar] [CrossRef] [PubMed]
- akahashi, O.; Oishi, S. Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ. Health Perspect. 2000, 108, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.D.; Shin, B.S.; Lee, B.M.; Lee, K.C.; Han, S.Y.; Kim, H.S.; Kwack, S.J.; Park, K.L. Bioavailability and mammary excretion of bisphenol a in Sprague-Dawley rats. J. Toxicol. Environ. Health A 2001, 64, 417–426. [Google Scholar] [CrossRef]
- Suglia, A.; Chianese, R.; Migliaccio, M.; Ambrosino, C.; Fasano, S.; Pierantoni, R.; Cobellis, G.; Chioccarelli, T. Bisphenol A induces hypothalamic down-regulation of the the cannabinoid receptor 1 and anorexigenic effects in male mice. Pharmacol. Res. 2016, 113, 376–383. [Google Scholar] [CrossRef]
- Migliaccio, M.; Ricci, G.; Suglia, A.; Mackie, K.; Fasano, S.; Pierantoni, P.; Chioccarelli, T.; Cobellis, G. Analysis of endocannabinoid system in rat testis during the first spermatogenetic wave. Front. Endocrinol. 2018, 9, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Guidance for Industry Bioanalytical Method Validation; Food Drug Adm: Rockwell, MD, USA, 2013.
Sample Availability: Samples of the compounds are not available from the authors. |
Analyte | RT (min) | ESI (kV) | Precursor Ions (m/z) | Product Ions a (m/z) | DP (V) | EP (V) | CE (eV) | CXP (V) |
---|---|---|---|---|---|---|---|---|
BPA | 7.3 | −4.5 | 227.1 | 212.1, 133.0 | −40 | −10 | −25 | −8 |
BPA-d16 | 7.3 | −4.5 | 243.1 | 215.0, 138.2 | −60 | −7 | −35 | −10 |
17β-Estradiol | 8.0 | −4.5 | 271.0 | 145.0, 183.0 | −70 | −10 | −55 | −8 |
Testosterone | 8.6 | 5.0 | 288.9 | 97.1, 109.2 | 90 | 7 | 40 | 10 |
Matrix | Analyte | LOD (ng/mL) | LOQ (ng/mL) | Equation | R2 |
---|---|---|---|---|---|
testis | BPA | 0.03 | 0.12 | y = 60 + 565x | 0.998 |
E2 | 0.03 | 0.12 | y = 68.5 + 373x | 0.997 | |
TT | 0.05 | 0.18 | y = 98.6 + 628x | 0.994 | |
vFAT | BPA | 0.04 | 0.12 | y = 40.2 + 629x | 0.992 |
E2 | 0.06 | 0.2 | y = 74.7 + 388x | 0.996 | |
TT | 0.08 | 0.3 | y = 89.7 + 703x | 0.991 | |
matrix-free(water/MeOH) | BPA | 0.03 | 0.1 | y = 55.9 + 593x | 0.999 |
E2 | 0.05 | 0.15 | y = 81.0 + 379x | 0.997 | |
TT | 0.06 | 0.2 | y = 103+ 663x | 0.996 |
Tissue | Analyte (ng/mL) | Process Efficiency (%) | Intra-Day | Inter-Day | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision (%RDS) | Accuracy (%) | Precision (%RDS) | Accuracy (%) | |||||||||||||
1 | 10 | 50 | 1 | 10 | 50 | 1 | 10 | 50 | 1 | 10 | 50 | 1 | 10 | 50 | ||
testis | BPA | 77.9 | 83.3 | 76.6 | 12.0 | 11.2 | 10.9 | 102.4 | 98.7 | 97.2 | 14.8 | 13.9 | 14.0 | 104.3 | 98.2 | 91.6 |
E2 | 74.1 | 80.2 | 80.0 | 13.0 | 12.2 | 11.2 | 100.5 | 98.4 | 99.8 | 16.3 | 14.7 | 13.3 | 98.3 | 96.4 | 95.7 | |
TT | 70.2 | 74.5 | 68.0 | 12.6 | 13.1 | 10.5 | 99.9 | 98.6 | 94.6 | 16.4 | 16.9 | 14.8 | 97.6 | 95.9 | 88.9 | |
vFAT | BPA | 66.4 | 68.3 | 69.7 | 12.9 | 11.3 | 11.7 | 101.3 | 97.2 | 95.6 | 15.8 | 14.3 | 12.1 | 94.1 | 94.0 | 90.5 |
E2 | 69.2 | 67.4 | 67.0 | 13.2 | 12.6 | 10.8 | 103.1 | 97.9 | 88.8 | 15.9 | 15.1 | 16.0 | 90.6 | 92.3 | 85.6 | |
TT | 65.4 | 63.7 | 70.7 | 14.2 | 13.4 | 12.6 | 99.4 | 93.6 | 91.5 | 17.1 | 14.5 | 17.2 | 91.0 | 99.1 | 97.3 |
Testis | vFat | |||||
---|---|---|---|---|---|---|
BPA (ng/g) | E2 (ng/g) | TT (ng/g) | BPA (ng/g) | E2 (ng/g) | TT(ng/g) | |
CTRL1 | <LOD | <LOD | 227.42 ± 2.22 | 19.44 ± 0.76 | 9.25 ± 0.6 | 6.85 ± 0.59 |
CTRL2 | <LOD | 1.56 ± 0.12 | 215.96 ± 3.10 | 16.97 ± 1.24 | 4.35 ± 0.51 | 44.47 ± 1.55 |
CTRL3 | <LOD | <LOD | 318.72 ± 0.98 | 16.18 ± 0.75 | 8.63 ± 0.73 | 89.50 ± 1.60 |
CTRL4 | <LOD | <LOD | 348.57 ± 1.89 | 10.25 ± 0.72 | 14.72 ± 0.33 | 134.45 ± 2.28 |
BPA1 | 10.29 ± 0.65 | 102.94 ± 1.56 | 36.76 ± 1.55 | 406.78 ± 2.38 | 201.53 ± 0.88 | 114.44 ± 1.66 |
BPA2 | 6.02 ± 0.32 | 22.56 ± 2.45 | 83.45 ± 0.89 | 216.01 ± 1.37 | 48.75 ± 1.12 | 103.44 ± 2.18 |
BPA3 | 13.37 ± 0.68 | 144.92 ± 1.54 | 37.43 ± 0.78 | 142.85 ± 1.27 | 19.83 ± 1.31 | 36.01 ± 0.84 |
BPA4 | 2.12 ± 0.56 | 228.77 ± 2.33 | 50.23 ± 1.85 | 4.51 ± 0.63 | 2.46 ± 0.72 | 17.63 ± 0.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Errico, S.; Chioccarelli, T.; Moggio, M.; Diano, N.; Cobellis, G. A New LC-MS/MS Method for Simultaneous and Quantitative Detection of Bisphenol-A and Steroids in Target Tissues: A Power Tool to Characterize the Interference of Bisphenol-A Exposure on Steroid Levels. Molecules 2020, 25, 48. https://doi.org/10.3390/molecules25010048
Errico S, Chioccarelli T, Moggio M, Diano N, Cobellis G. A New LC-MS/MS Method for Simultaneous and Quantitative Detection of Bisphenol-A and Steroids in Target Tissues: A Power Tool to Characterize the Interference of Bisphenol-A Exposure on Steroid Levels. Molecules. 2020; 25(1):48. https://doi.org/10.3390/molecules25010048
Chicago/Turabian StyleErrico, Sonia, Teresa Chioccarelli, Martina Moggio, Nadia Diano, and Gilda Cobellis. 2020. "A New LC-MS/MS Method for Simultaneous and Quantitative Detection of Bisphenol-A and Steroids in Target Tissues: A Power Tool to Characterize the Interference of Bisphenol-A Exposure on Steroid Levels" Molecules 25, no. 1: 48. https://doi.org/10.3390/molecules25010048
APA StyleErrico, S., Chioccarelli, T., Moggio, M., Diano, N., & Cobellis, G. (2020). A New LC-MS/MS Method for Simultaneous and Quantitative Detection of Bisphenol-A and Steroids in Target Tissues: A Power Tool to Characterize the Interference of Bisphenol-A Exposure on Steroid Levels. Molecules, 25(1), 48. https://doi.org/10.3390/molecules25010048