Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experiments
2.2. Structure Elucidation of Degradation Byproducts DP1–DP7
3. Materials and Methods
3.1. Drug and Reagents
3.2. Reaction
3.2.1. Apparatus and Equipment
3.2.2. Peracetic Acid Oxidation Experiments
3.2.3. Procedure and Products Isolation
3.3. Spectral Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shah, E.; Liebrand, J.; Vos, J.; Veldwisch, G.J.; Boelens, R. The UN World Water Development Report 2016,Water and Jobs: A Critical Review. Dev. Chang. 2018, 49, 678–691. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.C.; Anderson, J.; Low, J.E.; Cardinal, P.; MacKenzie, S.D.; Beattie, S.A.; Challis, J.K.; Bennett, R.J.; Meronek, S.S.; Wilks, R.P.; et al. Presence and hazards of nutrients and emerging organic micropollutants from sewage lagoon discharges into Dead Horse Creek, Manitoba, Canada. Sci. Total. Environ. 2013, 445, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Barber, L.B.; Keefe, S.H.; Brown, G.; Furlong, E.T.; Gray, J.L.; Kolpin, D.W.; Meyer, M.T.; Sandstrom, M.W.; Zaugg, S.D. Persistence and Potential Effects of Complex Organic Contaminant Mixtures in Wastewater-Impacted Streams. Environ. Sci. Technol. 2013, 47, 2177–2188. [Google Scholar] [CrossRef] [PubMed]
- Basile, T.; Petrella, A.; Petrella, M.; Boghetich, G.; Petruzzelli, V.; Colasuonno, S.; Petruzzelli, D. Review of Endocrine-Disrupting-Compound Removal Technologies in Water and Wastewater Treatment Plants: An EU Perspective. Ind. Eng. Chem. Res. 2011, 50, 8389–8401. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Samer, M. Biological and Chemical Wastewater Treatment Processes. Wastewater Treatment Engineering 2015, 150. [Google Scholar] [CrossRef] [Green Version]
- Thiebault, T.; Boussafir, M.; Le Milbeau, C. Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: Mass balance, fate and consumption assessment. J. Environ. Chem. Eng. 2017, 5, 2894–2902. [Google Scholar] [CrossRef] [Green Version]
- Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803–814. [Google Scholar] [CrossRef]
- Romanucci, V.; Siciliano, A.; Galdiero, E.; Guida, M.; Luongo, G.; Liguori, R.; Di Fabio, G.; Previtera, L.; Zarrelli, A. Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol. Molecules 2019, 24, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrelli, A.; DellaGreca, M.; Parolisi, A.; Iesce, M.R.; Cermola, F.; Temussi, F.; Isidori, M.; Lavorgna, M.; Passananti, M.; Previtera, L. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. Sci. Total. Environ. 2012, 426, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrelli, A.; DellaGreca, M.; Iesce, M.R.; Lavorgna, M.; Temussi, F.; Schiavone, L.; Criscuolo, E.; Parrella, A.; Previtera, L.; Isidori, M. Ecotoxicological evaluation of caffeine and its derivatives from a simulated chlorination step. Sci. Total. Environ. 2014, 470, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanucci, V.; Siciliano, A.; Guida, M.; Libralato, G.; Saviano, L.; Luongo, G.; Previtera, L.; Di Fabio, G.; Zarrelli, A. Disinfection by-products and ecotoxic risk associated with hypochlorite treatment of irbesartan. Sci. Total. Environ. 2020, 712, 135625. [Google Scholar] [CrossRef] [PubMed]
- Kitis, M. Disinfection of wastewater with peracetic acid: a review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Bettenhausen, A.C. How peracetic acid is changing wastewater treatment. Chem. Eng. News 2020, 98. in press. [Google Scholar]
- Monarca, S.; Richardso, S.D.; Feretti, D.; Grottolo, M.; Thruston, A.D.; Zani, C.; Navazio, G.; Ragazzo, P.; Zerbini, I.; Alberti, A. Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ. Toxicol. Chem. 2002, 21, 309–318. [Google Scholar] [CrossRef]
- Booth, R.; Lester, J. The potential formation of halogenated by-products during peracetic acid treatment of final sewage effluent. Water Res. 1995, 29, 1793–1801. [Google Scholar] [CrossRef]
- Lofrano, G.; Meric, S.; Zengin, G.E.; Orhon, D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total. Environ. 2013, 461, 265–281. [Google Scholar] [CrossRef]
- Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T.A. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res. 2015, 87, 237–270. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Sun, P.; Zhang, L.; Huang, C.-H. UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environ. Sci. Technol. 2017, 51, 14217–14224. [Google Scholar] [CrossRef]
- De Leo, M.; Giorgi, M.; Saccomanni, G.; Manera, C.; Braca, A. Evaluation of tramadol and its main metabolites in horse plasma by high-performance liquid chromatography/fluorescence and liquid chromatography/electrospray ionization tandem mass spectrometry techniques. Rapid Commun. Mass Spectrom. 2009, 23, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Thummar, M.M.; Patel, P.N.; Kushwah, B.S.; Samanthula, G. Application of the UHPLC method for separation and characterization of major photolytic degradation products of trazodone by LC-MS and NMR. New J. Chem. 2018, 42, 16972–16984. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Drugs | Drug Conc. (g/L) | Drug/PAA Molar Ratio | pH Initial | pH Final * | Time (h) | % Drug Recovery ** |
---|---|---|---|---|---|---|
Caffeine | 1.5 | 1.0 | 3.0 | 6.0 | 2 | >90 |
1.5 | 1.0 | 3.0 | 6.0 | 4 | >90 | |
1.5 | 0.1 | 3.0 | 6.0 | 1 | 35 | |
1.5 | 0.01 | 2.5 | 5.5 | 1 | 15 | |
Tramadol | 2.0 | 1.0 | 5.0 | 6.0 | 1 | >90 |
2.0 | 1.0 | 5.0 | 6.0 | 2 | >83 | |
1.9 | 0.1 | 4.0 | 6.0 | 1.5 | 74 | |
2.0 | 0.01 | 1.5 | 2.5 | 2 | 11 | |
Irbesartan | 2.0 | 1.0 | 3.5 | 5.0 | 2 | >90 |
2.0 | 1.0 | 3.5 | 5.0 | 4 | >78 | |
2.5 | 0.1 | 2.0 | 5.0 | 2 | 68 | |
1.0 | 0.01 | 2.5 | 3.0 | 2 | 59 | |
Diclofenac | 1.5 | 1.0 | 3.0 | 6.0 | 2 | >90 |
1.5 | 1.0 | 3.0 | 6.0 | 4 | >77 | |
1.5 | 0.1 | 3.0 | 6.0 | 2 | 35 | |
1.5 | 0.01 | 2.0 | 6.0 | 2 | 25 | |
1.5 | 0.01 | 2.0 | 6.0 | 4 | 19 | |
Trazodone | 1.5 | 1.0 | 5.5 | 6.0 | 1 | 75 |
1.5 | 0.1 | 2.5 | 6.0 | 2 | 26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luongo, G.; Previtera, L.; Ladhari, A.; Di Fabio, G.; Zarrelli, A. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules 2020, 25, 2294. https://doi.org/10.3390/molecules25102294
Luongo G, Previtera L, Ladhari A, Di Fabio G, Zarrelli A. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules. 2020; 25(10):2294. https://doi.org/10.3390/molecules25102294
Chicago/Turabian StyleLuongo, Giovanni, Lucio Previtera, Afef Ladhari, Giovanni Di Fabio, and Armando Zarrelli. 2020. "Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater" Molecules 25, no. 10: 2294. https://doi.org/10.3390/molecules25102294
APA StyleLuongo, G., Previtera, L., Ladhari, A., Di Fabio, G., & Zarrelli, A. (2020). Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 25(10), 2294. https://doi.org/10.3390/molecules25102294