Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Contents
2.2. Antioxidants
2.3. Total Amino Acids Composition
2.4. Determination of Isoflavones
2.5. Assessment of Minerals
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Microorganism and Soybean Material
4.3. Preparation of Fermented Soybeans
4.4. Preparation of Sample Extraction
4.5. Determination of Total Phenolic Contents
4.6. DPPH Radical Scavenging Activity
4.7. ABTS Radical-Scavenging Activity
4.8. Free Amino Acid Analysis
4.9. Determination of Isoflavones
4.10. Assessment of Minerals
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Bringe, N.A.; Berhow, M.A.; De Mejia, E.G. B-conglycinins among sources of bioactives in hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J. Agric. Food Chem. 2008, 56, 4012–4020. [Google Scholar] [CrossRef]
- Li-Jun, Y.; Li-Te, L.; Zai-Gui, L.; Tatsumi, E.; Saito, M. Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chem. 2004, 87, 587–592. [Google Scholar] [CrossRef]
- Wuttke, W.; Jarry, H.; Seidlová-Wuttke, D. Isoflavones-Safe food additives or dangerous drugs? Ageing Res. Rev. 2007, 6, 150–188. [Google Scholar] [CrossRef]
- Fonseca, D.; Ward, W.E. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone 2004, 35, 489–497. [Google Scholar] [CrossRef]
- Ping, S.P.; Shih, S.C.; Rong, C.T.; King, W.Q. Effect of isoflavone aglycone content and antioxidation activity in natto by various cultures of Bacillus subtilis during the fermentation period. J. Nutri. Food Sci. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Agarkar, G. Plant–fungal interactions: What triggers the fungi to switch among lifestyles? Crit. Rev. Microbiol. 2014, 1–11. [Google Scholar] [CrossRef]
- Egounlety, M.; Aworh, O.C. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 2003, 56, 249–254. [Google Scholar]
- Ushakova, N.A.; Brodskii, E.S.; Kozlova, A.A.; Nifatov, A.V. Anaerobic solid-phase fermentation of plant substrates by Bacillus subtilis. Appl. Biochem. Microbiol. 2009, 45, 61–67. [Google Scholar] [CrossRef]
- Papadaki, A.; Kopsahelis, N.; Mallouchos, A.; Mandala, I.; Koutinas, A.A. Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Res. Int. 2019, 126, 108684. [Google Scholar] [CrossRef]
- Papadaki, A.; Kopsahelis, N.; Freire, D.M.; Mandala, I.; Koutinas, A.A. Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.J.; Lee, J.M.; Hasan, M.T.; Lee, B.J.; Lim, S.G.; Kong, I.S. Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2019, 92, 719–727. [Google Scholar] [CrossRef]
- Ali, M.; Kim, I.-D.; Bilal, S.; Shahzad, R.; Saeed, M.; Adhikari, B.; Nabi, R.; Kyo, J.; Shin, D.H. Effects of Bacterial Fermentation on the Biochemical Constituents and Antioxidant Potential of Fermented and Unfermented Soybeans Using Probiotic Bacillus subtilis (KCTC 13241). Molecules 2017, 22, 2200. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.W.; Shahzad, R.; Bilal, S.; Adhikari, B.; Kim, I.D.; Lee, J.D.; Lee, I.J.; Kim, B.O.; Shin, D.H. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean (Cheonggukjang) with Bacillus subtilis KCTC 13241. J. Food Sci. Technol. 2018, 55, 2871–2880. [Google Scholar] [CrossRef]
- Messina, M.J.; Persky, V.; Setchell, K.D.R.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef]
- Izumi, T.; Piskula, M.K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Human nutrition and metabolism soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Kim, J.K.; Lee, S.Y. Effects of fermentation on SDS-PAGE patterns, total peptide, isoflavone contents and antioxidant activity of freeze-thawed tofu fermented with Bacillus subtilis. Food Chem. 2018, 249, 60–65. [Google Scholar] [CrossRef]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Asaf, S.; Khan, M.A.; Kang, S.M.; Yun, B.W.; Lee, I.J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem. 2016, 106, 236–243. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I.J. Plant growth-promoting endophytic bacteria versus pathogenic infections: An example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. Peerj 2017, 5, e3107. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Waqas, M.; Kang, S.M.; Lee, I.J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ. Exp. Bot. 2017, 136, 68–77. [Google Scholar] [CrossRef]
- Shahzad, R.; Latif, K.A.; Ali, L.; Bilal, S.; Imran, M.; Choi, K.S.; Al-Harrasi, A.; Lee, I.J. Characterization of new bioactive enzyme inhibitors from endophytic Bacillus amyloliquefaciens RWL-1. Molecules 2018, 23, 114. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Munekata, P.E.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products–A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Conlon, M.; Bird, A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef]
- Hong, H.A.; Le, H.D.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.A.; White, P.J.; Galloway, R. Soybeans: Chemistry, Production, Processing, and Utilization; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Hu, Y.; Ge, C.; Yuan, W.; Zhu, R.; Zhang, W.; Du, L.; Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci Food Agric. 2010, 90, 1194–1202. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E. Antioxidant properties and total phenolics of Thua Nao (a Thai fermented soybean) as affected by Bacillus fermentation. J. Microb. Biochem. Technol. 2011, 3, 056–059. [Google Scholar] [CrossRef] [Green Version]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2‘-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kang, S.C. Evaluation of in vitro free radical scavenging potential of Streptomyces sp. AM-S1 culture filtrate. Saudi J. Biol. Sci. 2013, 20, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J. Food Compos. Anal. 2011, 24, 402–410. [Google Scholar] [CrossRef]
- Shon, M.Y.; Lee, J.; Choi, J.H.; Choi, S.Y.; Nam, S.H.; Seo, K.I.; Lee, S.W.; Sung, N.J.; Park, S.K. Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J. Food Compos. Anal. 2007, 20, 113–118. [Google Scholar] [CrossRef]
- Shin, E.C.; Lee, J.H.; Hwang, C.E.; Lee, B.W.; Kim, H.T.; Ko, J.M.; Baek, I.Y.; Shin, J.H.; Nam, S.H.; Seo, W.T.; et al. Enhancement of total phenolic and isoflavone-aglycone contents and antioxidant activities during Cheonggukjang fermentation of brown soybeans by the potential probiotic Bacillus subtilis CSY191. Food Sci. Biotechnol. 2014, 23, 531–538. [Google Scholar] [CrossRef]
- Hwang, C.E.; Seo, W.T.; Cho, K.M. Enhanced antioxidant effect of black soybean by Cheonggukjang with potential probiotic Bacillus subtilis CSY191. Korean J. Microbiol. 2013, 49, 391–397. [Google Scholar] [CrossRef]
- Akhavan, M.; Jahangiri, S.; Shafaghat, A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind. Crop. Prod. 2015, 63, 114–118. [Google Scholar] [CrossRef]
- Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. Amino acids, peptides, and proteins. In Fennema’s Food Chemistry 4; CRC Press: Boca Raton, FL, USA, 2017; pp. 235–356. [Google Scholar]
- Sarkar, P.K.; Jones, L.J.; Craven, G.S.; Somerset, S.M.; Palmer, C. Amino acid profiles of kinema, a soybean-fermented food. Food Chem. 1997, 59, 69–75. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E.; Frazier, R.A. Free-amino acid profiles of thua nao, a Thai fermented soybean. Food Chem. 2011, 125, 342–347. [Google Scholar] [CrossRef]
- Lee, M.Y.; Park, S.Y.; Jung, K.O.; Park, K.Y.; Kim, S.D. Quality and functional characteristics of chungkukjang prepared with various Bacillus sp. isolated from traditional chungkukjang. J. Food Sci. 2005, 70, M191–M196. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Waqas, M.; Ullah, I.; Bilal, S.; Kim, Y.H.; Asaf, S.; Kang, S.M.; Lee, I.J. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics 2019, 15, 16. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Wong, W.T.; Wu, R.; Lai, W.F. Biochemistry and use of soybean isoflavones in functional food development. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–15. [Google Scholar] [CrossRef]
- Chun, J.; Kim, J.S.; Kim, J.H. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 2008, 109, 278–284. [Google Scholar] [CrossRef]
- Shon, M.Y.; Seo, K.I.; Lee, S.W.; Choi, S.H.; Sung, N.J. Biological activities of chungkugjang prepared with black bean and changes in phytoestrogen content during fermentation. Korean J. Food Sci. Technol. 2000, 32, 936–941. [Google Scholar]
- Barbosa, A.C.; Lajolo, F.M.; Genovese, M.I. Influence of temperature, pH and ionic strength on the production of isoflavone-rich soy protein isolates. Food Chem. 2006, 98, 757–766. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, M.J.; Ahn, J.; Lee, S.H.; Lee, H.; Kim, J.H.; Park, S.H.; Jang, Y.J.; Ha, T.Y.; Jung, C.H. Nutrikinetics of isoflavone metabolites after fermented soybean product (cheonggukjang) ingestion in ovariectomized mice. Mol. Nutr. Food Res. 2017, 61, 1700322. [Google Scholar] [CrossRef]
- Nakajima, N.; Nozaki, N.; Ishihara, K.; Ishikawa, A.; Tsuji, H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng. 2005, 100, 685–687. [Google Scholar] [CrossRef]
- Choi, U.K.; Kim, M.H.; Lee, N.H.; Jeong, Y.S.; Kwon, O.J.; Kim, Y.C.; Hwang, Y.H. The characteristics of cheonggukjang, a fermented soybean product, by the degree of germination of raw soybeans. Food Sci. Biotechnol. 2007, 16, 734–739. [Google Scholar]
- Yang, S.O.; Chang, P.S.; Lee, J.H. Isoflavone distribution and β-glucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 2006, 15, 96–101. [Google Scholar]
- Cho, K.M.; Hong, S.Y.; Math, R.K.; Lee, J.H.; Kambiranda, D.M.; Kim, J.M.; Islam, S.M.; Yun, M.G.; Cho, J.J.; Lim, W.J.; et al. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009, 114, 413–419. [Google Scholar] [CrossRef]
- Achi, O.K.; Asamudo, N.U. Cereal-based fermented foods of Africa as functional foods. In Bioactive Molecules in Food; Springer Nature: Cham, Switzerland, 2018; pp. 1–32. [Google Scholar] [CrossRef]
- Maria, J.K.M.; Enkhtaivan, G.; Lee, J.; Thiruvengadam, M.; Keum, Y.S.; Kim, D.H. Spectroscopic determination of metabolic and mineral changes of soya-chunk mediated by Aspergillus sojae. Food Chem. 2015, 170, 1–9. [Google Scholar] [CrossRef]
- Bilal, S.; Khan, A.L.; Waqas, M.; Shahzad, R.; Kim, I.D.; Lee, I.J.; Shin, D.H. Biochemical constituents and in vitro antioxidant and anticholinesterase potential of seeds from native Korean persimmon genotypes. Molecules 2016, 21, 893. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the Bacillus amyloliquefaciens RWL-1 are available from the authors. |
Amino Acid mg/0.1 g | Control | 1% RWL-1 | 3% RWL-1 | 5% RWL-1 |
---|---|---|---|---|
aspartic acid | 0.45 ± 0.04 c | 1.54 ± 0.10 a | 1.40 ± 0.14 a | 0.76 ± 0.03 b |
Threonine | 1.8 ± 0.01 d | 4.69 ± 0.13 a | 2.77 ± 0.09 b | 2.05 ± 0.31 c |
Serine | 0.58 ± 0.03 a | 0.50 ± 0.06 b | 0.57 ± 0.01 a | 0.57 ± 0.01 a |
glutamic acid | 2.3 ± 0.01 d | 8.98 ± 0.62 a | 5.56 ± 0.30 b | 3.55 ± 0.04 c |
Glycine | 1.12 ± 0.02 d | 3.93 ± 0.15 a | 2.4 ± 0.23 b | 1.86 ± 0.43 c |
Alanine | 7.44 ± 0.33 d | 22.30 ± 0.70 a | 18.28 ± 0.46 b | 10.14 ± 0.50 c |
Cysteine | 3.64 ± 0.37 c | 5.77 ± 0.28 b | 11.49 ± 0.32 a | 4.00 ± 0.13 c |
Valine | 4.25 ± 0.21 d | 12.04 ± 0.19 a | 10.84 ± 0.15 b | 5.54 ± 0.36 c |
Methionine | 1.08 ± 0.09 d | 6.60 ± 0.24 a | 4.58 ± 0.39 b | 2.00 ± 0.18 c |
Isoleucine | 3.49 ± 0.23 d | 11.21 ± 0.49 a | 8.46 ± 0.23 b | 5.43 ± 0.32 c |
Leucine | 5.48 ± 0.37 d | 22.70 ± 0.38 a | 15.26 ± 0.37 b | 8.76 ± 0.44 c |
Tyrosine | 2.46 ± 0.25 c | 5.49 ± 0.31 a | 5.23 ± 0.29 a | 3.19 ± 0.35 b |
Phenylalanine | 3.46 ± 0.25 d | 11.30 ± 0.59 a | 7.85 ± 0.11 b | 4.34 ± 0.38 c |
Lysine | 2.59 ± 0.31 d | 8.19 ± 0.26 a | 4.69 ± 0.23 b | 3.49 ± 0.30 c |
Histidine | 1.30 ± 0.08 b | 6.53 ± 0.39 a | 6.49 ± 0.46 a | 1.47 ± 0.07 b |
Arginine | 4.63 ± 0.26 d | 9.51 ± 0.34 a | 7.53 ± 0.37 b | 6.67 ± 0.37 c |
Proline | 3.41 ± 0.25 d | 12.11 ± 0.52 a | 9.09 ± 0.64 b | 4.97 ± 0.38 c |
Total Amino Acids | 47.70 ± 3.25 d | 204.77 ± 6.38 a | 136.11 ± 4.97 b | 75.30 ± 3.49 c |
Isoflavone mg/kg | Control | 1% RWL-1 | 3% RWL-1 | 5% RWL-1 |
---|---|---|---|---|
Daidzin | 154.32 ± 1.76 d | 302.67 ± 3.12 a | 285.44 ± 2.54 b | 254.02 ± 2.74 c |
Genistin | 260.56 ± 3.14 d | 399.21 ± 2.43 a | 356.82 ± 3.92 b | 290.64 ± 4.51 c |
Glycitin | 25.98 ± 2.45 d | 84.54 ± 1.32 a | 75.26 ± 1.33 b | 49.87 ± 0.48 c |
Daidzein | 183.72 ± 3.37 a | 104.48 ± 4.83 b | 89.04 ± 1.65 c | 71.32 ± 1.12 d |
Glycitein | 126.86 ± 2.28 a | 76.39 ± 2.35 b | 63.53 ± 2.74 c | 34.27 ± 0.98 d |
Genistein | 42.65 ± 2.05 a | 26.89 ± 0.66 b | 17.43 ± 1.78 c | 15.29 ± 1.05 d |
Total isoflavones | 749.09 ± 4.72 c | 994.18 ± 6.91 a | 887.52 ± 6.35 b | 715.41 ± 4.69 d |
Minerals (mg/kg) | Control | 1% RWL-1 | 3% RWL-1 | 5% RWL-1 |
---|---|---|---|---|
Calcium | 1754.41 ± 12 d | 1834.64 ± 19 c | 1893.32 ± 37 b | 1932.35 ± 25 a |
Copper | 23.72 ± 0.15 a | 15.42 ± 0.93 c | 20.26 ± 0.14 b | 20.51 ± 1.13 b |
Iron | 44.23 ± 1.54 d | 61.93 ± 0.73 c | 83.76 ± 1.91 b | 124.32 ± 1.24 a |
Potassium | 9945 ± 34.03 d | 10321 ± 23.32 c | 11322 ± 24.32 b | 12813 ± 43.28 a |
Magnesium | 787.54 ± 23.03 d | 882.32 ± 11.36 c | 912.16 ± 31.2 b | 1092.33 ± 32.5 a |
Manganese | 47.29 ± 0.14 c | 92.63 ± 2.76 b | 93.71 ± 4.76 a,b | 94.76 ± 3.43 a |
Sodium | 58.51 ± 3.62 d | 133.87 ± 3.54 b | 93.23 ± 2.32 c | 243.32 ± 3.54 a |
Nickel | 7.78 ± 1.24 a | 2.43 ± 0.07 d | 4.98 ± 1.12 c | 6.56 ± 1.32 b |
Zinc | 29.32 ± 1.76 c | 33.98 ± 1.79 b | 33.98 ± 1.79 b | 36.54 ± 1.03 a |
Total Minerals | 12715.50 ± 41 d | 13449.18 ± 27 c | 14271.04 ± 36 b | 16363.42 ± 17 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, R.; Shehzad, A.; Bilal, S.; Lee, I.-J. Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules 2020, 25, 2346. https://doi.org/10.3390/molecules25102346
Shahzad R, Shehzad A, Bilal S, Lee I-J. Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules. 2020; 25(10):2346. https://doi.org/10.3390/molecules25102346
Chicago/Turabian StyleShahzad, Raheem, Adeeb Shehzad, Saqib Bilal, and In-Jung Lee. 2020. "Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean" Molecules 25, no. 10: 2346. https://doi.org/10.3390/molecules25102346
APA StyleShahzad, R., Shehzad, A., Bilal, S., & Lee, I. -J. (2020). Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules, 25(10), 2346. https://doi.org/10.3390/molecules25102346