A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Chemical Synthesis
3.2.1. Synthesis of Bisnorcholanic Lactam Derivatives via Oxo-Amide Intermediates
Procedure for Lactam 4a and 4b Synthesis
Synthesis of Oxo-Amide 3b
Synthesis of Lactam 4b with EtSiH/TFA
Synthesis of Lactam 4a with EtSiH/Bi(OTf)3
Procedure for N-Alkyl-Lactam 4c and 4d Synthesis
Synthesis of Hydroxy-Amides 2c and 2d
Synthesis of Oxo-Amides 3c and 3d
Procedure for Lactam 4c and 4d Synthesis
3.2.2. Synthesis of Bisnorcholanic Lactam Derivatives via Oxo-Acid 5b
Procedure for Oxo-Acid 5b Synthesis
Reductive Amination/Cyclization of Oxo-Acid (5b) with Ammonium Acetate/Sodium Borohydride
Procedure for N-Alkyl-Lactam 4e, 4f - Synthesis from Oxo-Acid 5b
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jastrzebska, I. Synthesis and application of steroidal 22,16β-carbolactones: A review. J. Steroid Biochem. Mol. Biol. 2020, 199, 105592. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, A.G.; Garcia, F.C.; Freire, R.; López, E.S. Nuevas fuentes naturales de sapogeninas esteroidales. IX. Solanum Vespertilio Ait. An. Química 1971, 67, 433–439. [Google Scholar]
- Zheng, Q.-A.; Zhang, Y.-J.; Li, H.-Z.; Yang, C.-R. Steroidal saponins from fresh stem of Dracaena cochinchinensis. Steroids 2004, 69, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, V.U.; Khaliq-Uz-Zaman, S.M.; Shameel, S.; Perveen, S.; Ali, Z. Steroidal saponins from Asparagus dumosus. Phytochemistry 1999, 50, 481–484. [Google Scholar] [CrossRef]
- Yin, J.; Han, N.; Liu, Z.; Song, S.; Kadota, S. The in vitro antiosteoporotic activity of some glycosides in Dioscorea spongiosa. Biol. Pharm. Bull. 2010, 33, 316–320. [Google Scholar] [CrossRef]
- Jastrzebska, I.; Niemirowicz, K.; Brzozowska, W.I.; Bucki, R. The synthesis and antifungal activity of (20S)-3β-acetoxy-5α-pregnane-20,16β-carbolactone against fluconazole–resistant Candida cells. Steroids 2017, 118, 55–60. [Google Scholar] [CrossRef]
- Bruttomesso, A.C.; Doller, D.; Gros, E.G. Stereospecific synthesis of steroidal 20,16-γ-carbolactones. Synth. Commun. 1998, 28, 4043–4057. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Sammes, P.G.; Werstiuk, E.; Taylor, M.V. Transformation of the steroidal sapogenin side chain. Part I. Reactions of 9(11)-dehydrohecogenin acetate with nitrous acid and with paraformaldehyde. J. Chem. Soc. C 1970, 1977–1981. [Google Scholar] [CrossRef]
- López, Y.; Ruíz-Pérez, K.M.; Yépez, R.; Santillan, R.; Flores-Álamo, M.; Iglesias-Arteaga, M.A. Mechanistic insights and new products of the reaction of steroid sapogenins with NaNO2 and BF3·Et2O in acetic acid. Steroids 2008, 73, 657–668. [Google Scholar] [CrossRef]
- Iglesias-Arteaga, M.A.; Velazqez-Herta, G.A.; Mendez-Stivalet, J.M.; Galano, A.; Alvarez-Idaboy, J.M. The Baeyer-Villiger reaction of 23-oxosapogenins. Arkivoc 2005, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Jastrzębska, I.; Morzycki, J.W. Unusual Baeyer-Villiger oxidation of 23-oxosarsasapogenin acetate. Pol. J. Chem. 2005, 79, 1245–1248. [Google Scholar] [CrossRef]
- Macías-Alonso, M.; Morzycki, J.W.; Iglesias-Arteaga, M.A. Studies on the BF3·Et2O catalyzed Baeyer-Villiger reaction of spiroketalic steroidal ketones. Steroids 2011, 76, 317–323. [Google Scholar] [CrossRef] [PubMed]
- López, Y.; Jastrzębska, I.; Santillan, R.; Morzycki, J.W. Synthesis of “glycospirostanes”—Steroid sapogenins with a sugar-like ring F. Steroids 2008, 73, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, I.; Siergiejczyk, L.; Tomkiel, A.M.; Urbanczyk-Lipkowska, Z.; Wójcik, D.; Morzycki, J.W. On reactions of steroidal 23-oxo and 23,24-epoxysapogenins with Lewis acids. Steroids 2009, 74, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, I.; Morzycki, J.W. Some observations on solasodine reactivity. Steroids 2017, 127, 13–17. [Google Scholar] [CrossRef]
- Sato, Y.; Ikekawa, N. The chemistry of the spiroaminoketal side chain of solasodine and tomatidine. 2. Chemistry of 3β,16β-diacetoxy-20-(2′-Δ2′-N-acetyl-5′-methyltetrahydropyridyl)-5-pregnene. J. Org. Chem. 1960, 25, 786–789. [Google Scholar] [CrossRef]
- Tian, W.S.; Li, M.; Yin, H.; Tang, X.F. Lactone Compound and Its Synthesis and Use. Chinese Patent CN 1299821, 10 September 2003. [Google Scholar]
- Wang, S.-S.; Shi, Y.; Tian, W.-S. Highly efficient and scalable synthesis of clionamine D. Org. Lett. 2014, 16, 2177–2179. [Google Scholar] [CrossRef]
- Efferth, T.; Fu, Y.-J.; Zu, Y.-G.; Schwarz, G.; Konkimalla, B.; Wink, M. Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr. Med. Chem. 2007, 14, 2024–2032. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Kim, Y.H.; Dudley, S.C.; Choudhary, G.; Pfahnl, A.; Oshima, Y.; Daly, J.W. The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: A potent sodium-channel blocker. Proc. Natl. Acad. Sci. USA 2004, 101, 4346–4351. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Nishinaga, T.; Uyeo, S.; Yamashiro, O.; Minami, K. Transformation of epipachysandrine-A into pachystermine-A and -B. Tetrahedron Lett. 1968, 9, 909–912. [Google Scholar] [CrossRef]
- Orhan, I.E.; Khan, M.T.; Erdem, S.A.; Kartal, M.; Sener, B. Selective cholinesterase inhibitors from Buxus sempervirens L. and their molecular docking studies. Curr. Comput. Drug Des. 2011, 7, 276–286. [Google Scholar] [CrossRef]
- Stoner, E. The clinical development of a 5α-reductase inhibitor, finasteride. J. Steroid Biochem. Mol. Biol. 1990, 37, 375–378. [Google Scholar] [CrossRef]
- Choi, G.S.; Kim, J.H.; Oh, S.-Y.; Park, J.-M.; Hong, J.-S.; Lee, Y.-S.; Lee, W.-S. Safety and tolerability of the dual 5α-reductase inhibitor dutasteride in the treatment of androgenetic alopecia. Ann. Dermatol. 2016, 28, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Lin, Q.; Huang, Y.; Gan, C.; Yao, Q.; Wei, Y.; Xiao, Q.; Kong, E. Design, synthesis and antiproliferative evaluation of some B-homo steroidal lactams. Med. Chem. Res. 2015, 24, 2906–2915. [Google Scholar] [CrossRef]
- Dhingra, N.; Bhardwaj, T.; Mehta, N.; Mukhopadhyay, T.; Kumar, A.; Kumar, M. Synthesis, antiproliferative, acute toxicity and assessment of antiandrogenic activities of some newly synthesized steroidal lactams. Eur. J. Med. Chem. 2010, 45, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Sivertsen, A.C.; Gasior, M.; Bjerring, M.; Hansen, S.U.; López, Ó.; Nielsen, N.C.; Bols, M. Active site protonation of 1-azafagomine in glucosidases studied by solid-state NMR spectroscopy. Eur. J. Org. Chem. 2007, 1735. [Google Scholar] [CrossRef]
- Lee, H.W.; Yang, Y.L.; Kim, S.Y.; Shin, Y.U.; Chang, J.S.; Um, H.W.; Goh, Y.H.; Jhon, S.H. Method for Producing Bio-Based Homoserine Lactone and Bo-Based Organic Acid from O-Acyl Homoserine Produced by Microorganisms. U.S. Patent US 2014/0296466 A1, 02 October 2014. [Google Scholar]
- Wojtkielewicz, A.; Łotowski, Z.; Morzycki, J.W. One-Step synthesis of nitriles from acids, esters and amides using DIBAL-H and ammonium chloride. Synlett 2015, 26, 2288–2292. [Google Scholar] [CrossRef]
- Devocelle, M.; Mortreux, A.; Agbossou, F.; Dormoy, J.-R. Alternative synthesis of the chiral atypical β-adrenergic phenylethanolaminotetraline agonist SR58611A using enantioselective hydrogenation. Tetrahedron Lett. 1999, 40, 4551–4554. [Google Scholar] [CrossRef]
- Dupau, P.; Le Gendre, P.; Bruneau, C.; Dixneuf, P.H. Optically active amine derivatives: Ruthenium-catalyzed enantioselective hydrogenation of enamides. Synlett 1999, 11, 1832–1834. [Google Scholar] [CrossRef]
- Tschaen, D.M.; Abramson, L.; Cai, D.; Desmond, R.; Dolling, U.-H.; Frey, L.; Karady, S.; Shi, Y.-J.; Verhoeven, T.R. Asymmetric synthesis of MK-0499. J. Org. Chem. 1995, 60, 4324–4330. [Google Scholar] [CrossRef]
- Renaud, J.-L.; Dupau, P.; Hay, A.-E.; Guingouain, M.; Dixneuf, P.H.; Bruneau, C. Ruthenium-catalysed enantioselective hydrogenation of trisubstituted enamides derived from 2-tetralone and 3-chromanone: Influence of substitution on the amide arm and the aromatic ring. Adv. Synth. Catal. 2003, 345, 230–238. [Google Scholar] [CrossRef]
- Qi, J.; Sun, C.; Tian, Y.; Wang, X.; Li, G.; Xiao, Q.; Yin, D. Highly efficient and versatile synthesis of lactams and N-Heterocycles via Al(OTf)3-catalyzed cascade cyclization and ionic hydrogenation reactions. Org. Lett 2014, 16, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Boehm, J.C.; Callahan, J.F.; Heightman, T.D.; Kerns, J.K.; Woolford, A.J.-A.; Yan, H. 3-(2,3-Dihydro-1h-inden-5-yl)Propanoic Acid Derivatives and Their Use as NRF2 Regulators. Patent Application WO/2018/104766 A1, 26 October 2018. [Google Scholar]
- Sasikumar, T.K.; Burnett, D.A.; Asberom, T.; Wu, W.-L.; Li, H.; Xu, R.; Josien, H.B. Benzenesulfonyl-Chromane, Thiochromane, Tetrahydronaphthalene and Related Gamma Secretase. Inhibitors. Patent WO2009011851A1, 22 January 2009. [Google Scholar]
- Hernández, R.; Marrero, J.; Suárez, E.; Perales, A. Fragmentation of alkoxy radicals: Mechanistic aspects of the tandemβ-fragmentation-intramolecular functionalization reaction. Tetrahedron Lett. 1988, 29, 5979–5981. [Google Scholar] [CrossRef]
- Tojo, G.; Fernández, M. Ruthenium-based oxidations. In Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; Tojo, G., Ed.; Springer Science+Business Media, Inc.: New York, NY, USA, 2006; pp. 220–228. [Google Scholar]
- Dong, L.; Aleem, S.; Fink, C.A. Microwave-accelerated reductive amination between ketones and ammonium acetate. Tetrahedron Lett. 2010, 51, 5210–5212. [Google Scholar] [CrossRef]
- Dangerfield, E.M.; Plunkett, C.H.; Win-Mason, A.L.; Stocker, B.L.; Timmer, M.S.M. Protecting-group-free synthesis of amines: Synthesis of primary amines from aldehydes via reductive amination. J. Org. Chem. 2010, 75, 5470–5477. [Google Scholar] [CrossRef]
- Bomann, M.D.; Guch, I.C.; Dimare, M. A mild, pyridine-borane-based reductive amination protocol. J. Org. Chem. 1995, 60, 5995–5996. [Google Scholar] [CrossRef]
- Miriyala, B.; Bhattacharyya, S.; Williamson, J.S. Chemoselective reductive alkylation of ammonia with carbonyl compounds: Synthesis of primary and symmetrical secondary amines. Tetrahedron 2004, 60, 1463–1471. [Google Scholar] [CrossRef]
- Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride Studies on direct and indirect reductive amination procedures. J. Org. Chem. 1996, 61, 3849–3862. [Google Scholar] [CrossRef]
- Seroka, B.; Łotowski, Z.; Wojtkielewicz, A.; Bazydło, P.; Dudź, E.; Hryniewicka, A.; Morzycki, J.W. Synthesis of steroidal 1,2- and 1,3-diamines as ligands for transition metal ion complexation. Steroids 2019, 147, 19–29. [Google Scholar] [CrossRef]
- Dalmolin, M.C.; Bandeira, P.T.; Ferri, M.S.; de Oliveira, A.R.; Piovan, L. Straightforward microwave-assisted synthesis of organochalcogen amines by reductive amination. J. Organomet. Chem. 2018, 874, 32–39. [Google Scholar] [CrossRef]
- Williams, J.R.; Gong, H.; Hoff, N.; Olubodun, O.I.; Carroll, P.J. α-Hydroxylation at C-15 and C-16 in cholesterol: synthesis of (25R)-5α-cholesta-3β,15α,26-triol and (25R)-5α-cholesta-3β,16α,26-triol from diosgenin. Org. Lett. 2004, 6, 269–271. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtkielewicz, A.; Pawelski, D.; Bazydło, P.; Baj, A.; Witkowski, S.; Morzycki, J.W. A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives. Molecules 2020, 25, 2377. https://doi.org/10.3390/molecules25102377
Wojtkielewicz A, Pawelski D, Bazydło P, Baj A, Witkowski S, Morzycki JW. A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives. Molecules. 2020; 25(10):2377. https://doi.org/10.3390/molecules25102377
Chicago/Turabian StyleWojtkielewicz, Agnieszka, Damian Pawelski, Przemysław Bazydło, Aneta Baj, Stanisław Witkowski, and Jacek W. Morzycki. 2020. "A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives" Molecules 25, no. 10: 2377. https://doi.org/10.3390/molecules25102377
APA StyleWojtkielewicz, A., Pawelski, D., Bazydło, P., Baj, A., Witkowski, S., & Morzycki, J. W. (2020). A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives. Molecules, 25(10), 2377. https://doi.org/10.3390/molecules25102377