Natural Nitrogenous Sesquiterpenoids and Their Bioactivity: A Review
Abstract
:1. Introduction
2. Species Containing Nitrogenous Sesquite Rpenoids and Their Bioactivities
2.1. Dihydroagarofuran Sesquiterpenoids
2.2. Drimane and Friedo-Drimane Sesquiterpenoids
2.3. Eudesmane Sesquiterpenoids
2.4. Cadinane Sesquiterpenoids
2.5. Bisabolane Sesquiterpenoids
2.6. Germacrane, Elemaneand Iresane Sesquiterpenoids
2.7. Farnesane, Spiroaxane, Aromadendrane and Pupukeanane Sesquiterpenoids
2.8. Tremulane, Daucane, Brasilane, Salvialane, Aristolane, Bergamotane and Valerane Sesquiterpenoids
2.9. Cyclonerane, Axane, Nardosinane, Zizaane, Eremophilane, and Guaiane Sesquiterpenoids
2.10. Others
3. Occurrence
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
OAc | |
OBz | |
OFu | |
ONic | |
OtCin | |
OcCin | |
OTig | |
OMeBut |
References
- Zhan, Z.J.; Ying, Y.M.; Ma, L.F.; Shan, W.G. Natural disesquiterpenoids. Nat. Prod. Rep. 2011, 28, 594–629. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J. A hundred years in the elucidation of the structures of natural products. Sci. Progress 2017, 100, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol. 2016, 40, 1–3. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Vasas, A.; Hohmann, J. Xanthanesesquiterpenoids: Structure, synthesis and biological activity. Nat. Prod. Rep. 2011, 28, 824–842. [Google Scholar] [CrossRef]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What madesesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 2010, 15, 668–678. [Google Scholar] [CrossRef]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoidslactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [Green Version]
- Alarif, W.M.; Abdel-Lateff, A.; Alorfi, H.S.; Alburae, N.A. Alcyonacea: A potential source for production of nitrogen-containing metabolites. Molecules 2019, 24, 286. [Google Scholar] [CrossRef] [Green Version]
- Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2012, 29, 1334–1376. [Google Scholar] [CrossRef] [PubMed]
- Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2013, 30, 1226–1264. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.F.; Chen, Y.L.; Shan, W.G.; Zhan, Z.J. Natural disesquiterpenoids: An update. Nat. Prod. Rep. 2020. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.G.; Yue, J.M. Dimeric sesquiterpenoids. Prog. Chem. Org. Nat. Prod. 2016, 101, 1–112. [Google Scholar]
- Blair, L.M.; Sperry, J. Natural products containing a nitrogen−nitrogen bond. J. Nat. Prod. 2013, 76, 794–812. [Google Scholar] [CrossRef] [PubMed]
- Petkowski, J.J.; Bains, W.; Seager, S. Natural products containing a nitrogen-sulfur bond. J. Nat. Prod. 2018, 81, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Lhinhatrakool, T.; Prabpai, S.; Kongsaeree, P.; Sutthivaiyakit, S. Antiplasmodial sesquiterpene alkaloids from the roots of Maytenus mekongensis. J. Nat. Prod. 2011, 74, 1386–1391. [Google Scholar] [CrossRef]
- Luo, Y.G.; Min, Z.; Qi, Y.; Qiang, P.; Zhang, G.L. Dihydroagarofuran derivatives from the dried roots of Tripterygium wilfordii. J. Nat. Prod. 2012, 75, 98–102. [Google Scholar] [CrossRef]
- Xu, J.; Xie, C.F.; Jin, D.Q.; Guo, Y.Q.; Zhao, P.; Wang, S.N.; He, Y.S. Three new dihydroagarofuran sesquiterpenoids from Celastrus orbiculatus. Phytochem. Lett. 2012, 5, 713–716. [Google Scholar] [CrossRef]
- Li, C.J.; Xie, F.G.; Yang, J.Z.; Luo, Y.M.; Chen, X.G.; Zhang, D.M. Two sesquiterpene pyridine alkaloids and a triterpenoid saponin from the root barks of Tripterygium hypoglaucum. J. Asian Nat. Prod. Res. 2012, 14, 973–980. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.J.; Yang, J.Z.; Ma, J.; Chen, X.G.; Hou, Q.; Zhang, D.M. Anti-inflammatory sesquiterpene derivatives from the Leaves of Tripterygium wilfordii. J. Nat. Prod. 2013, 76, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.H.; Han, Z.Z.; Hu, X.Q.; Liu, Q.X.; Zhang, W.D.; Liu, R.H.; Li, H.L. Two new sesquiterpenes from Euonymus alatus. Helv. Chim Acta 2013, 96, 85–92. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.J.; Ma, J.; Yang, J.Z.; Chen, X.G.; Hou, Q.; Zhang, D.M. Bioactive sesquiterpene polyol esters from the leaves of Tripterygium wilfordii. Fitoterapia 2014, 96, 103–108. [Google Scholar] [CrossRef]
- Luo, Y.G.; Pu, X.; Luo, G.Y.; Zhou, M.; Ye, Q.; Liu, Y.; Gu, J.; Qi, H.Y.; Li, G.Y.; Zhang, G.L. Nitrogen-containing dihydro-β-agarofuran derivatives from Tripterygium wilfordii. J. Nat. Prod. 2014, 77, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.N.; Juan, C.O.; Ángel, G.R.; Ana, E.B. β-Agarofurans and sesquiterpene pyridine alkaloids from Maytenus spinosa. J. Nat. Prod. 2014, 77, 1853–1863. [Google Scholar]
- Gao, C.; Huang, X.X.; Bai, M.; Wu, J.; Li, J.Y.; Liu, Q.B.; Li, L.Z.; Song, S.J. Anti-inflammatory sesquiterpene pyridine alkaloids from Tripterygium wilfordii. Fitoterapia 2015, 105, 49–54. [Google Scholar] [CrossRef]
- Gao, Z.F.; Zhou, B.H.; Zhao, J.Y.; Cao, F.J.; Zhou, L.; Geng, H.L. Further study on chemical constituents of Parnassia wightiana Wall: Four new dihydro-β-agarofuran sesquiterpene polyesters. Int. J. Mol. Sci. 2015, 16, 9119–9133. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.S.; Zhu, G.Y.; Chen, M.; Xie, L.M.; Jiang, Z.H.; Xu, L.; Bai, L.P. Dihydro-β-agarofuran sesquiterpene polyesters isolated from the stems of Tripterygium regelii. Fitoterapia 2016, 112, 1–8. [Google Scholar] [CrossRef]
- Fan, D.S.; Zhu, G.Y.; Li, T.; Jiang, Z.H.; Bai, L.P. Dimacrolide sesquiterpene pyridine alkaloids from the stems of Tripterygium regelii. Molecules 2016, 21, 1146. [Google Scholar] [CrossRef] [Green Version]
- Toure, S.; Nirma, C.; Falkowski, M.; Dusfour, I.; Boulogne, I.; Jahn-Oyac, A.; Coke, M.; Azam, D.; Girod, R.; Moriou, C.; et al. Aedes aegypti larvicidal sesquiterpene alkaloids from Maytenus oblongata. J. Nat. Prod. 2017, 80, 384–390. [Google Scholar] [CrossRef]
- Gao, C.; Lou, L.L.; Wang, D.; Zhang, Y.; Huang, X.X.; Song, S.J. Chemical constituents from the roots of Tripterygium wilfordii and their cytotoxic activity. J. Asian Nat. Prod. Res. 2017, 19, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.Y.; Li, C.J.; Ma, J.; Zhou, J.; Li, L.; Zhang, Z.; Chen, N.H.; Zhang, D.M. Neuroprotective dihydroagarofuran sesquiterpene derivatives from the leaves of Tripterygium wilfordii. J. Nat. Prod. 2018, 81, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.Y.; Luo, Y.M.; Li, C.J.; Ma, J.; Huang, J.W.; Li, C.; Zhang, D.M. Dihydroagarofuran sesquiterpenoids esterified with organic acids from the leaves of Tripterygium wilfordii. Fitoterapia 2019, 137, 104185. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wang, Z.Y.; Chen, X.; Ma, Y.N.; Zhang, H.Y.; Zhao, T.Z. Two new sesquiterpene pyridine alkaloids from root barks of Celastrus angulatus. J. Asian Nat. Prod. Res. 2019, 21, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Z.; Yin, M.; Wang, X.Y.; Guo, S.H.; Li, D.L.; Feng, X.; Xu, S. Two new dihydro-β-agarofuran sesquiterpenes from stems and leaves of Monimopetalum chinense. Chin. Trad. Herbal Drugs 2019, 50, 13–16. [Google Scholar]
- Zhao, P.; Lin, B.; Hou, Z.L.; Zhou, L.; He, Q.J.; Yao, G.D.; Huang, X.X.; Song, S.J. Dihydro-β-agarofuran sesquiterpenoid derivatives with neuroprotective activity from the leaves of Tripterygium wilfordii. Fitoterapia 2020, 142, 104501. [Google Scholar] [CrossRef]
- Fu, Y.F.; Zhao, W.M. Polyesterified sesquiterpenoids from the seeds of Celastrus paniculatus as lifespan-extending agents for the nematode Caenorhabditis elegans. J. Nat. Prod. 2020, 83, 505–515. [Google Scholar]
- Fang, W.; Lin, X.P.; Zhou, X.F.; Wan, J.T.; Lu, X.; Yang, B.; Ai, W.; Lin, J.; Zhang, T.Y.; Tu, Z.C.; et al. Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med. Chem. Commun. 2014, 5, 701–706. [Google Scholar] [CrossRef]
- Tan, Y.H.; Yang, B.; Lin, X.P.; Luo, X.W.; Pang, X.Y.; Tang, L.; Liu, Y.H.; Li, X.J.; Zhou, X. F Nitrobenzoyl sesquiterpenoids with cytotoxic activities from a marine-derived Aspergillus ochraceus Fungus. J. Nat. Prod. 2018, 81, 92–97. [Google Scholar] [CrossRef]
- Ngokpol, S.; Suwakulsiri, W.; Sureram, S.; Lirdprapamongkol, K.; Aree, T.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Drimane sesquiterpene-conjugated amino acids from a marine isolate of the fungus Talaromyces minioluteus (Penicillium minioluteum). Mar. Drugs 2015, 13, 3567–3580. [Google Scholar] [CrossRef] [Green Version]
- Kaleem, S.; Ge, H.J.; Yi, W.W.; Zhang, Z.Z.; Wu, B. Isolation, structural elucidation, and antimicrobial evaluation of the metabolites from a marine-derived fungus Penicillium sp. ZZ1283. Nat. Prod. Res. 2019, 1680669. [Google Scholar] [CrossRef] [PubMed]
- Le, T.C.; Lee, E.J.; Lee, J.; Hong, A.; Yim, C.Y.; Yang, I.; Choi, H.; Chin, J.; Cho, S.J.; Ko, J.; et al. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp. Mar. Drugs 2019, 17, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utkina, N.K.; Denisenko, V.A.; Krasokhin, V.B. Sesquiterpenoid aminoquinones from the marine sponge Dysidea sp. J. Nat. Prod. 2010, 73, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Ovenden, S.P.B.; Nielson, J.L.; Liptrot, C.H.; Willis, R.H.; Tapiolas, D.M.; Wright, A.D.; Motti, C.A. Sesquiterpene benzoxazoles and sesquiterpene quinones from the marine sponge Dactylospongia elegans. J. Nat. Prod. 2011, 74, 65–68. [Google Scholar] [CrossRef]
- Hamed, A.N.E.; Wätjen, W.; Schmitz, R.; Chovolou, Y.; Edrada-Ebel, R.A.; Youssef, D.T.A.; Kamel, M.S.; Proksch, P. A new bioactive sesquiterpenoid quinone from the Mediterranean Sea marine sponge Dysideaavara. Nat. Prod. Commun. 2013, 8, 89–92. [Google Scholar]
- Kumar, R.; Subramani, R.; Aalbersberg, W. Three bioactive sesquiterpene quinones from the Fijian marine sponge of the genus Hippospongia. Nat. Prod. Res. 2013, 27, 1488–1491. [Google Scholar] [CrossRef]
- Daletos, G.; Voogd, N.J.; Müller, W.E.G.; Wray, V.; Lin, W.H.; Feger, D.; Kubbutat, M.; Aly, A.H.; Proksch, P. Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J. Nat. Prod. 2014, 77, 218–226. [Google Scholar] [CrossRef]
- Jiao, W.H.; Xu, T.T.; Yu, H.B.; Mu, F.R.; Li, J.; Li, Y.S.; Yang, F.; Han, B.N.; Lin, H.W. Dysidaminones A-M, cytotoxic and NF-kB inhibitory sesquiterpene aminoquinones from the South China Sea sponge Dysidea fragilis. RSC Adv. 2014, 4, 9236–9246. [Google Scholar] [CrossRef]
- Hwang, I.H.; Oh, J.; Zhou, W.; Park, S.; Kim, J.H.; Chittiboyina, A.G.; Ferreira, D.; Song, G.Y.; Oh, S.; Na, M.K.; et al. Cytotoxic activity of rearranged drimane meroterpenoids against colon cancer cells via down-regulation of β-catenin expression. J. Nat. Prod. 2015, 78, 453–461. [Google Scholar] [CrossRef]
- Li, J.; Gu, B.B.; Sun, F.; Xu, J.R.; Jiao, W.H.; Yu, H.B.; Han, B.N.; Yang, F.; Zhang, X.C.; Lin, H.W. Sesquiterpene quinones/hydroquinones from the marine sponge Spongiapertusa Esper. J. Nat. Prod. 2017, 80, 1436–1445. [Google Scholar] [CrossRef]
- Li, J.; Yang, F.; Wang, Z.; Wu, W.; Liu, L.; Wang, S.P.; Zhao, B.X.; Jiao, W.H.; Xu, S.H.; Lin, H.W. Unusual anti-inflammatory meroterpenoids from the marine sponge Dactylospongia sp. Org. Biomol. Chem. 2018, 16, 6773–6783. [Google Scholar] [CrossRef] [PubMed]
- Balansa, W.; Mettal, U.; Wuisan, Z.G.; Plubrukarn, A.; Ijong, F.G.; Liu, Y.; Schäberle, T.F. A new sesquiterpenoid aminoquinone from an Indonesian marine sponge. Mar. Drugs 2019, 17, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, W.H.; Li, J.; Wang, D.; Zhang, M.M.; Liu, L.Y.; Sun, F.; Li, J.Y.; Capon, R.J.; Lin, H.W. Cinerols, nitrogenous meroterpenoids from the marine sponge Dysideacinerea. J. Nat. Prod. 2019, 82, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Yin, Z.F.; Gu, B.B.; Zhang, J.P.; Wang, S.P.; Yang, F.; Lin, H.W. Cytotoxic meroterpenoids from the marine sponge Dactylospongia elegans. Nat. Prod. Res. 2019, 1633644. [Google Scholar] [CrossRef]
- Luo, X.C.; Li, P.L.; Wang, K.Y.; Voogd, N.J.; Tang, X.L.; Li, G.Q. Cytotoxic sesquiterpenoid quinones from South China Sea sponge Dysidea sp. Nat. Prod. Res. 2019, 1679132. [Google Scholar] [CrossRef]
- Gui, Y.H.; Liu, L.; Wu, W.; Zhang, Y.; Jia, Z.L.; Shi, Y.P.; Kong, H.T.; Liu, K.C.; Jiao, W.H.; Lin, H.W. Discovery of nitrogenous sesquiterpene quinone derivatives from sponge Dysidea septosa with anti-inflammatory activity in vivo zebrafsh model. Bioorg. Chem. 2020, 94, 103435. [Google Scholar] [CrossRef]
- Jiso, A.; Kittiwisut, S.; Chantakul, R.; Yuenyongsawad, S.; Putchakarn, S.; Schaberle, T.F.; Temkitthaworn, P.; Ingkaninan, K.; Chaithirayanon, K.; Plubrukarn, A. Quintaquinone, a merosesquiterpene from the yellow sponge Verongula cf. rigida Esper. J. Nat. Prod. 2020, 9b00886. [Google Scholar]
- Che, Q.; Zhu, T.J.; Qi, X.; Attila, M.; Tibor, K.; Mo, X.M.; Li, J.; Gu, Q.Q.; Li, D.H. Hybrid isoprenoids from a reeds rhizosphere soil derived actinomycete Streptomyces sp. CHQ-64. Org. Lett. 2012, 14, 3438–3441. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Mándi, A.; Li, S.; Chen, Y.C.; Zhang, W.J.; Tian, X.P.; Zhang, H.B.; Li, H.X.; Zhang, W.M.; Zhang, S.; et al. N-N-coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur. J. Org. Chem. 2012, 27, 5256–5262. [Google Scholar] [CrossRef]
- Suto, S.; Tanaka, N.; Fromont, J.; Kobayashi, J. Halichonadins G–J, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron Lett. 2011, 52, 3470–3473. [Google Scholar] [CrossRef]
- Tanaka, N.; Suto, S.; Ishiyama, H.; Kubota, T.; Yamano, A.; Shiro, M.; Fromont, J.; Kobayashi, J. Halichonadins K and L, new dimeric sesquiterpenoids from a sponge Halichondria sp. Org. Lett. 2012, 14, 3498–3501. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Suto, S.; Asai, M.; Kusama, T.; Takahashi-Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. Halichonadins M–Q, sesquiterpenes from an Okinawan marine sponge Halichondria sp. Heterocycles 2015, 90, 173–185. [Google Scholar]
- Ma, J.-H.; Zhao, F.; Wang, Y.; Liu, Y.; Gao, S.Y.; Ding, L.-Q.; Chen, L.X.; Qiu, F. Natural nitric oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Org. Biomol. Chem. 2015, 13, 8349–8358. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Cheng, Y.B.; Lin, Y.C.; Liaw, C.C.; Chang, J.Y.; Kuo, Y.H.; Shen, Y.C. Nitrogen-containing diterpenoids, sesquiterpenoids, and nor-diterpenoids from Cespitularia taeniata. Mar. Drugs 2015, 13, 5796–5814. [Google Scholar] [CrossRef] [Green Version]
- Prawat, H.; Mahidol, C.; Kaweetripo, W.; Prachyawarakorn, V.; Tuntiwachwuttikul, P.; Ruchirawat, S. Sesquiterpene isocyanides, isothiocyanates, thiocyanates, and formamides from the Thai sponge Halichondria sp. Tetrahedron 2016, 72, 4222–4229. [Google Scholar] [CrossRef]
- Li, X.W.; Chen, S.H.; Ye, F.; Mollo, E.; Zhu, W.L.; Liu, H.L.; Guo, Y.W. Axiriabilines A-D, uncommon nitrogenous eudesmane-type sesquiterpenes from the Hainan sponge Axinyssa variabilis. Tetrahedron 2017, 73, 5239–5243. [Google Scholar] [CrossRef]
- Wu, Q.H.; Chen, W.T.; Li, S.W.; Ye, J.Y.; Huan, X.J.; Gavagnin, M.; Yao, L.G.; Wang, H.; Miao, Z.H.; Li, X.W.; et al. Cytotoxic nitrogenous terpenoids from two South China Sea nudibranchs Phyllidiella pustulosa, Phyllidia coelestis, and their sponge-prey Acanthella cavernosa. Mar. Drugs 2019, 17, 56. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.S.; Wu, Z.; Zheng, X.Q.; Wang, C.; Wang, J.R.; Zhang, X.X.; Qiu, G.F.; Zhu, K.K.; Cao, S.G.; Yu, J.Q. Spiroalanpyrroids A and B, sesquiterpene alkaloids with a unique spiro-eudesmanolide-pyrrolizidine skeleton from Inula helenium. Org. Chem. Front. 2020. [Google Scholar] [CrossRef]
- Prawat, H.; Mahidol, C.; Wittayalai, S.; Intachote, P.; Kanchanapoom, T.; Ruchirawat, S. Nitrogenous sesquiterpenes from the Thai marine sponge Halichondria sp. Tetrahedron 2011, 67, 5651–5655. [Google Scholar] [CrossRef]
- Abdjul, D.B.; Kanno, S.; Yamazaki, H.; Ukai, K.; Namikoshi, M. A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells. Bioorg. Med. Chem. Lett. 2016, 26, 315–317. [Google Scholar] [CrossRef]
- Sim, D.C.M.; Mudianta, I.W.; White, A.M.; Martiningsih, N.W.; Loh, J.J.M.; Cheney, K.L.; Garson, M.J. New sesquiterpenoid isonitriles from three species of phyllidid nudibranchs. Fitoterapia 2018, 126, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.S.; Qin, D.P.; Wang, S.X.; Yang, C.; Li, G.P.; Cheng, Y.X. Commipholactam A, a cytotoxic sesquiterpenoidal lactam from Resina Commiphora. Fitoterapia 2019, 134, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, X.Y.; Li, D.; Zhang, Y.; Li, L.; Guo, L.D.; Cao, Y.; Che, Y.S. Bisabolane sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. J. Nat. Prod. 2015, 78, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Raiju, K.; Hitora, Y.; Kato, H.; Ise, Y.; Angkouw, E.D.; Mangindaan, R.E.P.; Tsukamoto, S. Halichonic acid, a new rearranged bisabolene-type sesquiterpene from a marine sponge Halichondria sp. Tetrahedron Lett. 2019, 60, 1079–1081. [Google Scholar] [CrossRef]
- Xin, Y.; Xu, M.; Wang, Y.F.; Zheng, X.H.; Zhu, H.T.; Wang, D.; Yang, C.R.; Zhang, Y.J. Phyllanthacidoid U: A new N-glycosyl norbisabolane sesquiterpene from Phyllanthus acidus (L.) skeels. Nat. Prod. Res. 2020, 1712387. [Google Scholar] [CrossRef]
- Park, H.W.; Lee, J.H.; Choi, S.U.; Baek, N.I.; Kim, S.H.; Yang, J.H.; Kim, D.K. Cytotoxic germacranolide sesquiterpenes from the bark of Magnolia kobus. Arch. Pharm. Res. 2020, 33, 71–74. [Google Scholar] [CrossRef]
- Ohno, O.; Chiba, T.; Todoroki, S.; Yoshimura, H.; Maru, N.; Maekawa, K.; Imagawa, H.; Yamada, K.; Wakamiy, A.; Suenaga, K.; et al. Halichonines A, B, and C, novel sesquiterpene alkaloids from the marine sponge Halichondria okadai Kadota. Chem. Commun. 2011, 47, 12453–12455. [Google Scholar] [CrossRef]
- Wang, C.Y.; Kim, D.; Zhu, Y.K.; Oh, D.C.; Huang, R.Z.; Wang, H.S.; Liang, D.; Lee, S.K. Glechomanamides A-C, germacrane sesquiterpenoids with an unusual Δ8−7,12-lactam moiety from Salvia scapiformis and their antiangiogenic activity. J. Nat. Prod. 2019, 82, 3056–3064. [Google Scholar] [CrossRef]
- Sugimoto, S.; Yamano, Y.; Desoukey, S.Y.; Katakawa, K.; Wanas, A.S.; Otsuka, H.; Matsunami, K. Isolation of sesquiterpene-amino acid conjugates, onopornoids A-D, and a flavonoid glucoside from Onopordum alexandrinum. J. Nat. Prod. 2019, 82, 1471–1477. [Google Scholar] [CrossRef]
- Zhang, G.J.; Sun, S.W.; Zhu, T.J.; Lin, Z.J.; Gu, J.Y.; Li, D.H.; Gu, Q.Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochem. 2011, 72, 1436–1442. [Google Scholar] [CrossRef]
- Putz, A.; Kehraus, S.; Díaz-Agras, G.; Wägele, H.; König, G.M. Dotofide, a guanidine-interrupted terpenoid from the marine slug Doto pinnatifida (Gastropoda, Nudibranchia). Eur. J. Org. Chem. 2011, 3733–3737. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Sun, J.Z.; Mao, S.C.; Guo, Y.W. Fasciospyrinadine, a novel sesquiterpene pyridine alkaloid from a Guangxi sponge Fasciospongia sp. J. Asian Nat. Prod. Res. 2013, 15, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.M.; Huang, L.L.; Dai, H.; Xu, Q.L.; Ouyang, J.K.; Jia, X.C.; Gu, W.X.; Tan, J.W. Anti-MRSA sesquiterpenes from the semi-mangrove plant Myoporum bontioides A. Gray. Mar. Drugs 2018, 16, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, Y.M.; Shan, W.G.; Zhan, Z.J. Biotransformation of huperzine A by a fungal endophyte of Huperzia serrata furnished sesquiterpenoid-alkaloid hybrids. J. Nat. Prod. 2014, 77, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.M.; Hoeck, C.; Frisvad, J.C.; Gotfredsen, C.H.; Larsen, T.O. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 2014, 19, 10898–10921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Liu, X.X.; Zhang, W.J.; Zang, L.Y.; Wang, G.; Seik, W.N.; Tan, R.X.; Ge, H.M. Sesquiterpenoids isolated from an endophyte fungus Diaporthe sp. RSC Adv. 2015, 5, 17559–17565. [Google Scholar] [CrossRef]
- Zhang, L.H.; Feng, B.M.; Chen, G.; Li, S.G.; Sun, Y.; Wu, H.H.; Bai, J.; Hua, H.M.; Wang, H.F.; Pei, Y.H. SporulaminalsA and B: A pair of unusual epimericspiroaminal derivatives from a marine-derived fungus Paraconiothyrium sporulosum YK-03. RSC Adv. 2016, 6, 42361–42366. [Google Scholar] [CrossRef]
- Wang, P.C.; Ran, X.H.; Luo, H.R.; Ma, Q.Y.; Zhou, J.; Hu, J.M.; Zhao, Y.X. Volvalerine A, an unprecedented N-containing sesquiterpenoid dimer derivative from Valeriana officinalis var. latifolia. Fitoterapia 2016, 109, 174–178. [Google Scholar] [CrossRef]
- Song, Y.P.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Nitrogenous cyclonerane sesquiterpenes from an algicolous strain of Trichoderma asperellum. Org. Chem. Front. 2019, 6, 3698–6704. [Google Scholar] [CrossRef]
- Kim, D.; Lee, E.J.; Lee, J.; Leutou, A.S.; Shin, Y.H.; Choi, B.; Hwang, J.S.; Hahn, D.; Choi, H.; Chin, J.; et al. Antartin, a cytotoxic zizaane-type sesquiterpenoid from a Streptomyces sp. isolated from an Antarctic marine sediment. Mar. Drugs 2018, 16, 130. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Wang, J.J.; Wang, J.F.; Shi, L.Q.; Li, K.L.; Lin, X.P.; Min, Y.; Yang, B.; Tang, L.; Liu, Y.H.; et al. Cytotoxic and antibacterial eremophilane sesquiterpenes from the marine-derived fungus Cochliobolus lunatus SCSIO41401. J. Nat. Prod. 2018, 81, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Qin, D.P.; Zhou, H.; Luo, J.F.; Yao, Y.D.; Lio, C.K.; Li, H.B.; Dai, Y.; Yu, Y.; Yao, X.S. Nardochinoids A-C, three dimeric sesquiterpenoids with specific fused-ring skeletons from Nardostachys chinensis. Org. Lett. 2018, 20, 5813–5816. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.L.; Wang, Q.; Wang, J.X.; Dong, H.Y.; Xu, X.K.; Shen, Y.H.; Li, H.L.; Zhang, W.D. Vlasoulamine A, a neuroprotective [3.2.2]cyclazine sesquiterpene lactone dimer from the roots of Vladimiria souliei. Org. Lett. 2018, 20, 7567–7570. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, Z.Q.; Luo, X.C.; Liu, J.; Li, G.Q.; Cao, S.G.; Liu, Q.S. Clavukoellians A-F, Highly rearranged nardosinane sesquiterpenoids with antiangiogenic activity from Clavularia koellikeri. J. Nat. Prod. 2019, 82, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Torii, M.; Kato, H.; Hitora, Y.; Angkouw, E.D.; Mangindaan, R.E.P.; Voogd, N.J.; Tsukamoto, S. Lamellodysidines A and B, sesquiterpenes isolated from the marine sponge Lamellodysidea herbacea. J. Nat. Prod. 2017, 80, 2536–2541. [Google Scholar] [CrossRef]
No | Name | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | Type | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mekongensine | OAc | OBz | βOAc | βOAc | OAc | OH | βOAc | OAc | H | A | [17] |
2 | 7-epi-Mekongensine | OAc | OBz | αOAc | βOAc | OAc | OH | βOAc | OAc | H | A | [17] |
3 | 1-O-Benzoyl-1-deacetylmekongensine | OBz | OBz | βOAc | βOAc | OAc | OH | βOAc | OAc | H | A | [17] |
4 | 9′-Deacetoxymekongensine | OAc | OBz | βOAc | βOAc | OAc | OH | βOAc | H | H | A | [17] |
5 | 1-O-Benzoyl-1-deacetyl-9′-deacetoxymekongensine | OBz | OBz | βOAc | βOAc | OAc | OH | βOAc | H | H | A | [17] |
6 | 7-epi-Euojaponine A | OBz | OH | αOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [17] |
7 | 2-O-Benzoyl-2-deacetylmayteine | OBz | OAc | βOAc | βOAc | OAc | OH | βOBz | H | CH3 | B | [17,24] |
8 | 7-epi-5-O-Benzoyl-5-deacetylperitassine A | OAc | OBz | αOAc | βOAc | OAc | OH | βOAc | H | CH3 | C | [17] |
9 | 7-epi-Euonymine | OAc | OAc | αOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [17] |
10 | Mayteine | OBz | OAc | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [17] |
11 | 7-epi-Mayteine | OBz | OAc | αOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [17] |
12 | Euonymine | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [17,18,21,26] |
13 | 9′-O-Acetyl-7-deacetoxy-7-oxowilfortrine | OAc | OAc | O | βOAc | OAc | OH | βOFu | OAc | H | A | [18,26] |
14 | 9′-O-Acetylwilfortrine | OAc | OAc | βOAc | βOAc | OAc | OH | βOFu | OAc | H | A | [18] |
15 | 9′-O-Furanoylwilfordine | OAc | OAc | βOAc | βOAc | OAc | OH | βOBz | OFu | H | A | [18] |
16 | 7-O-Benzoyl-5,7-dideacetylwilformine | OAc | OH | βOBz | βOAc | OAc | OH | βOAc | H | H | A | [18] |
17 | Wilfortrine | OAc | OAc | βOAc | βOAc | OAc | OH | βOFu | OH | H | A | [18,21,26] |
18 | Wilforgine | OAc | OAc | βOAc | βOAc | OAc | OH | βOFu | H | H | A | [18,23,26] |
19 | Wilfordine | OAc | OAc | βOAc | βOAc | OAc | OH | βOBz | OH | H | A | [18,26] |
20 | Wilforine | OAc | OAc | βOAc | βOAc | OAc | OH | βOBz | H | H | A | [18,26] |
21 | Wilformine | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | H | H | A | [18] |
22 | Wilforidine | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | OH | H | A | [18] |
23 | Cangorinine E-1 | OAc | OBz | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [18] |
24 | Ebenifoline E-II | OBz | OBz | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [18] |
25 | Neoeuonymine | OAc | OH | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [18,24,26] |
26 | Peritassine A | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | C | [18,21,31] |
27 | Wilfornine G | OAc | OAc | βONic | βOAc | OAc | OH | βOAc | H | CH3 | C | [18] |
28 | Regelidine | OBz | ONic | H | αOBz | H | OH | H | H | H | D | [18,24,28] |
29 | 9-O-trans-Cinnamoyl-9-debenzoylregelidine | OBz | ONic | H | αOtCin | H | OH | H | H | H | D | [18] |
30 | 1β-Acetoxy-8α,9β-dibenzoyloxy-13-nicotinoyloxy-β-dihydroagarofuran | OAc | H | αOBz | βOBz | ONic | H | H | H | H | D | [19] |
31 | 1β,2β-Diacetoxy-9α-benzoyloxy-13-nicotinoyloxy-β-dihydroagarofuran | OAc | H | H | αOBz | ONic | H | βOAc | H | H | D | [19] |
32 | Hypoglaunine E | OAc | OH | βOAc | βOAc | OFu | OH | βOAc | OH | CH3 | C | [20,21,31] |
33 | Hypoglaunine F | OAc | OH | βOAc | βOAc | OAc | OH | βOFu | OH | CH3 | C | [20,31] |
34 | Triptersinine A | OtCin | OH | O | βONic | OAc | OH | H | H | H | D | [21] |
35 | Triptersinine B | OcCin | OH | O | βONic | OAc | OH | H | H | H | D | [21] |
36 | Triptersinine C | βOtCin | OH | βOAc | βONic | OAc | OH | H | H | H | D | [21] |
37 | Triptersinine D | OcCin | OH | βOAc | βONic | OAc | OH | H | H | H | D | [21] |
38 | Triptersinine E | OcCin | OAc | βOAc | βONic | OAc | OH | H | H | H | D | [21] |
39 | Triptersinine F | OAc | ONic | βOAc | βOFu | OAc | OH | H | H | H | D | [21] |
40 | Triptersinine G | OAc | OAc | βONic | βOFu | OAc | OH | H | H | H | D | [21] |
41 | Triptersinine H | OFu | OAc | βONic | βOFu | OAc | OH | H | H | H | D | [21] |
42 | Triptersinine L | OAc | ONic | βOAc | αOTig | OAc | OH | H | H | H | D | [21] |
43 | Wilfordinine A | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | H | CH3 | C | [21,31] |
44 | Hypoglaunine A | OAc | OAc | βOAc | βOAc | OFu | OH | βOAc | OH | CH3 | C | [21,31] |
45 | Wilfordinine E | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | H | H | F | [21] |
46 | Euonine | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | H | H | A | [21,31] |
47 | Evonine | OAc | OAc | O | αOAc | OAc | OH | αOAc | H | CH3 | G | [22] |
48 | Neoevonine | OAc | OH | O | αOAc | OAc | OH | αOAc | H | CH3 | G | [22] |
49 | 1β,2β,5α,8β,11-Pentaacetoxy-4α-hydroxy-3α-(2-methylbutanoyl)-15-nicotinoyl-7-oxo-dihydroagarofuran | OAc | OAc | O | αOAc | OAc | OH | αOAc | OMeBu | ONic | E | [22] |
50 | Triptersinine M | OtCin | OAc | βOAc | βONic | OAc | OH | H | H | H | D | [23] |
51 | Triptersinine N | ONic | OFu | βOAc | βOFu | OAc | OH | H | H | H | D | [23] |
52 | Triptersinine O | OFu | OFu | βOAc | βONic | OAc | OH | H | H | H | D | [23] |
53 | Triptersinine P | OTig | OAc | βONic | βONic | OAc | OH | H | H | H | D | [23] |
54 | Triptersinine Q | OFu | OAc | βONic | βOTig | OAc | OH | H | H | H | D | [23] |
55 | Triptersinine R | OAc | OAc | βONic | αOFu | OAc | OH | H | H | H | D | [23] |
56 | Triptersinine S | OAc | OFu | βOAc | βONic | OAc | OH | H | H | H | D | [23] |
57 | Triptersinine T | OAc | OH | βOAc | βONic | OAc | H | H | H | H | D | [23] |
58 | Tripterygiumine A | OAc | OAc | - | βOAc | - | OH | βOBz | H | CH3 | H | [24] |
59 | Tripterygiumine B | OAc | OAc | βOBz | βOAc | OAc | OH | βOAc | H | CH3 | B | [24] |
60 | Tripterygiumine C | OAc | OBz | βOAc | βOAc | OAc | OH | βOBz | H | CH3 | B | [24] |
61 | Tripterygiumine D | OH | OBz | βOH | βOH | OH | OH | βOH | H | CH3 | B | [24] |
62 | Tripterygiumine E | OAc | OH | βOAc | βOAc | OAc | OH | βOFu | H | CH3 | B | [24] |
63 | Tripterygiumine F | OAc | OFu | βOAc | βOAc | OAc | OH | βOBz | H | CH3 | B | [24] |
64 | Tripterygiumine G | OAc | OBz | βOAc | βOAc | OAc | OH | βOFu | H | CH3 | B | [24] |
65 | Tripterygiumine H | OH | OAc | βOH | βOH | OH | OH | βOH | H | CH3 | B | [24] |
66 | Tripterygiumine I | OAc | OH | βOAc | βOAc | OAc | OH | βOBz | H | CH3 | B | [24] |
67 | Tripterygiumine J | OAc | OH | βOH | βOAc | OAc | OH | βOAc | H | CH3 | B | [24] |
68 | Tripterygiumine K | OAc | OH | βOAc | βOAc | OBz | OH | βOH | H | CH3 | B | [24] |
69 | Tripterygiumine L | ONic | OH | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [24] |
70 | Hyponine D | OAc | OBz | βOAc | βOAc | OAc | OH | βONic | H | CH3 | B | [24] |
71 | Hexadesacetyleuomynine | OH | OH | βOH | βOH | OH | OH | βOH | H | CH3 | B | [24] |
72 | Euojaponine A | OBz | OH | βOAc | βOAc | OAc | OH | βOAc | H | CH3 | B | [24] |
73 | Hyponine C | OAc | OAc | βOAc | βOAc | OBz | OH | βOAc | H | CH3 | B | [24] |
74 | 7-Acetyloxy-O11-benzoyl-O2,11- deacetyl-7- deoxoevonine | OAc | OAc | βOAc | βOAc | OBz | OH | βOH | H | CH3 | B | [24] |
75 | 4-Hydroxy-7-epi-chuchuhuanine E-V | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | H | CH3 | B | [24,26] |
76 | Wilfornine F | OAc | OBz | βOAc | βOAc | OAc | OH | βOH | H | CH3 | B | [24] |
77 | Tripterygiumine M | OAc | OH | O | βOAc | OAc | OH | βOBz | H | H | A | [24] |
78 | Tripterygiumine N | OAc | OH | O | βOAc | OAc | OH | βOBz | OFu | H | A | [24] |
79 | Tripterygiumine O | OAc | OH | βOAc | βOAc | OAc | OH | βOFu | OBz | H | A | [24] |
80 | Tripterygiumine P | OH | OAc | βOH | βOH | OH | OH | βOH | OBz | H | A | [24] |
81 | Tripterygiumine Q | OH | OAc | βOH | βOH | OH | OH | βOH | OFu | H | A | [24] |
82 | Triptonine B | OAc | OAc | βOAc | βOAc | OAc | OH | βOFu | OFu | H | A | [24] |
83 | 1-Desacetylwilforgine | OH | OAc | βOAc | βOAc | OAc | OH | βOFu | H | H | A | [24] |
84 | Alatamine | OAc | OAc | O | βOAc | OAc | OH | βOBz | OH | H | A | [24] |
85 | Alatusinine | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | OH | H | A | [24] |
86 | Wilforzine | OAc | OH | βOAc | βOAc | OAc | OH | βOBz | H | H | A | [24] |
87 | Wilforjine | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | H | H | A | [24,26] |
88 | Tripterygiumine R | ONic | OH | H | αOBz | H | OH | H | H | H | D | [24] |
89 | 1β,5α,11-Triacetoxy-7β-benzoyl-4α-hydroxy-8β- nicotinoyl-dihydroagarofuran | OAc | OAc | βOBz | αONic | OAc | OH | H | H | H | D | [24] |
90 | Wilforcidine | OBz | ONic | H | αOtCin | H | OH | H | H | H | D | [24] |
91 | 5α-Benzoyl-4α-hydroxy-1β,8α-dinicotinoyl-dihydroagarofuran | ONic | OBz | H | αONic | H | OH | H | H | H | D | [24] |
92 | 1α,2α,6β,8β,9α,15-Hexacetoxy-4β-hydroxy-3β,13-[2′-(3-carboxybutyl)]nicotinic acid-dicarbolactone-β-di hydroagarofuran | OAc | OAc | βOAc | αOAc | OAc | OH | αOAc | H | H | I | [25] |
93 | 1α,2α,9α,15-Tetracetoxy-4β,6β-dihydroxy-8-oxo,3β,13-[4′-(3-carboxybutyl)]nicotinicacid-dicarbolactone- β-dihydroagarofuran | OAc | OH | O | βOAc | OAc | OH | αOAc | H | H | J | [25] |
94 | 1α,2α,9α,15-Tetracetoxy-4β,6β,8β-trihydroxy-3β,13-[4′-(3-carboxybutyl)]nicotinic acid-dicarbolactone- β-dihydroagarofuran | OAc | OH | βOH | βOAc | OAc | OH | αOAc | H | H | J | [25] |
95 | 1α,2α,8β,9α,15-Pentacetoxy-4β,6β-dihydroxy-3β,13-[4′-(3-carboxybutyl)]nicotinic acid-dicarbolactone-β- dihydroagarofuran | OAc | OH | βOAc | βOAc | OAc | OH | αOAc | H | H | J | [25] |
96 | Tripterygiumine S | OAc | OAc | O | βOAc | OAc | OH | βOH | OFu | H | A | [26] |
97 | Tripterygiumine T | OAc | OH | O | βOAc | OAc | OH | βOH | OH | H | A | [26] |
98 | Tripterygiumine U | OAc | OAc | O | βOAc | OAc | OH | βOH | H | H | A | [26] |
99 | Tripterygiumine V | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | OBz | H | A | [26] |
100 | Tripterygiumine W | OFu | OBz | βOAc | βOAc | OAc | OH | βOH | H | CH3 | B | [26] |
101 | Wilfornine A | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | OBz | H | A | [26] |
102 | Wilfornine D | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | OFu | H | A | [26] |
103 | Tripfordine A | OAc | OAc | βOAc | βOAc | OAc | OH | βOH | OH | H | A | [26] |
104 | 2-Debenzoyl-2-nicotinoylwilforine | OAc | OAc | βOAc | βOAc | OAc | OH | βONic | H | H | A | [26] |
105 | (+)-(1R,2S,4S,5S,6R,7R,9S,10R)-1,2,15-Triacetoxy-9-benzoyloxy-6-nicotinoyloxydihydro-β-agarofuran | OAc | ONic | H | βOBz | OAc | OH | αOAc | H | H | E | [27] |
106 | Triptregeline A | ONic | OH | βOAc | αOBz | OAc | OH | αOAc | H | H | E | [28] |
107 | Triptregeline B | ONic | OAc | αOAc | αOBz | OAc | OH | H | H | H | E | [28] |
108 | Triptregeline C | ONic | OAc | αOH | αOBz | OH | OH | H | H | H | E | [28] |
109 | Triptregeline D | OFu | OAc | αONic | αOBz | OAc | OH | H | H | H | E | [28] |
110 | Triptregeline E | OFu | OH | αONic | αOBz | OAc | OH | H | H | H | E | [28] |
111 | Triptregeline F | OAc | OH | αONic | αOBz | OAc | OH | H | H | H | E | [28] |
112 | Triptregeline G | OFu | OH | αONic | αOAc | OAc | OH | H | H | H | E | [28] |
113 | Triptregeline H | OBz | OAc | αOH | αONic | OAc | OH | H | H | H | E | [28] |
114 | Triptregeline I | OFu | ONic | H | βOBz | H | OH | βOAc | H | H | E | [28] |
115 | Triptregeline J | OBz | ONic | H | βOBz | H | OH | H | H | H | E | [28] |
116 | 1α, 6β, 15-Triacetoxy-8α-benzoyloxy-4β-hydroxyl -9α-(3-nicotinoyloxy)-dihydro-β-agarofuran | OAc | OAc | αOBz | αONic | OAc | OH | H | H | H | E | [28] |
117 | Dimacroregeline A | OH | OAc | H | αOH | - | OH | αOH | H | CH3 | K | [29] |
118 | Dimacroregeline B | OH | OAc | OAc | αOH | - | OH | αOH | H | CH3 | K | [29] |
119 | Triptonine A | OAc | OAc | - | αOAc | - | OH | αOAc | H | CH3 | L | [29] |
120 | 4-Deoxyalatamine | OAc | OAc | O | αOAc | OAc | H | αOAc | OH | H | I | [30] |
121 | 1-O-Benzoyl-1-deacetyl-4-deoxyalatamine | OBz | OAc | O | αOAc | OAc | H | αOAc | OH | H | I | [30] |
122 | 1, 2-O-Dibenzoyl-1, 2-deacetyl-4-deoxyalatamine | OBz | OAc | O | αOAc | OAc | H | αOBz | OH | H | I | [30] |
123 | 4-Deoxyisowilfordine | OAc | OAc | βOAc | αOAc | OAc | H | αOBz | OH | H | J | [30] |
124 | Triptersinine U | OAc | OAc | βOAc | βOAc | OAc | OH | βOAc | αONic | ONic | D | [31] |
125 | Hypoglaunine B | OAc | OAc | βOAc | βOAc | OFu | OH | βOAc | OH | CH3 | C | [31] |
126 | Triptersinine Z4 | OFu | OAc | βOAc | βONic | OAc | H | H | H | H | D | [32] |
127 | Triptersinine Z5 | OAc | OFu | βOAc | βONic | OAc | H | H | H | H | D | [32] |
128 | Triptersinine Z6 | OFu | OFu | βOAc | βONic | OAc | H | H | H | H | D | [32] |
129 | Triptersinine Z7 | OcCin | OAc | βOAc | βONic | OAc | H | H | H | H | D | [32] |
130 | Triptersinine Z8 | OtCin | OAc | βOAc | βONic | OAc | H | H | H | H | D | [32] |
131 | Euojaponine C | OBz | OBz | βOAc | βOAc | OAc | OH | βOH | H | CH3 | B | [32] |
132 | Triptersinine Z9 | OcCin | OFu | βOAc | βONic | OAc | OH | H | H | H | D | [33] |
133 | Triptersinine Z10 | OtCin | OFu | βOAc | βONic | OAc | OH | H | H | H | D | [33] |
134 | Triptersinine Z11 | OtCin | OAc | βONic | βOFu | OAc | OH | H | H | H | D | [33] |
135 | Triptersinine Z12 | OcCin | OAc | βONic | βOFu | OAc | OH | H | H | H | D | [33] |
136 | Triptersinine Z13 | ONic | OFu | βOAc | βOTig | OAc | OH | H | H | H | D | [33] |
137 | Triptersinine Z14 | OAc | OFu | βONic | βOTig | OAc | OH | H | H | H | D | [33] |
138 | Chinese bittersweet alkaloid A | OAc | OAc | βOAc | βOAc | OiBu | OH | βOH | H | CH3 | B | [34] |
139 | Chinese bittersweet alkaloid B | OAc | OAc | βOAc | βOAc | OiBu | OH | βOAc | H | CH3 | B | [34] |
140 | Monimin I | ONic | ONic | H | αOAc | H | H | H | H | H | E | [35] |
141 | Monimin II | ONic | ONic | αOH | αOBz | H | H | H | H | H | E | [35] |
142 | Tripteryford C | ONic | OH | βOAc | αOAc | OAc | H | αOAc | βOH | H | E | [36] |
143 | Tripteryford E | ONic | OAc | αOH | βOFu | OAc | OH | αOAc | βOH | H | E | [36] |
144 | Celaspaculin G | OAc | OBz | βOAc | αONic | H | OH | H | H | H | E | [37] |
No | Name | R1 | R2 | R3 | R4 | R5 | R6 | R7 | Type | Ref |
---|---|---|---|---|---|---|---|---|---|---|
161 | 18-Aminoarenarone | H | NH2 | H | αH | αCH3 | βCH3 | βCH3 | I | [43] |
162 | 19-Aminoarenarone | NH2 | H | H | αH | αCH3 | βCH3 | βCH3 | I | [43] |
163 | 18-Methylaminoarenarone | H | NHCH3 | H | αH | αCH3 | βCH3 | βCH3 | I | [43] |
164 | 19-Methylaminoarenarone | NHCH3 | H | H | αH | αCH3 | βCH3 | βCH3 | I | [43] |
167 | Nkijinol B | OH | OH | H | H | βCH3 | βCH3 | βCH3 | II | [44] |
168 | Smenospongine B | H | NHCH2COOH | OH | αH | βCH3 | βCH3 | βCH3 | I | [44] |
169 | Smenospongine C | H | NH(CH2)2COOH | OH | H | βCH3 | βCH3 | βCH3 | II | [44] |
170 | Nakijinol B diacetate | OAc | OAc | H | αH | βCH3 | βCH3 | βCH3 | I | [44] |
171 | (−)-3′-Methylaminoavarone | H | NHCH3 | H | αH | βCH3 | βCH3 | βCH3 | III | [45] |
172 | (−)-4′-Methylamino-avarone | NHCH3 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [45] |
173 | (−)-N-Methylmelemeleone-A | H | N(CH3)(CH2)2SO3H | H | αH | βCH3 | βCH3 | βCH3 | III | [45] |
174 | Smenospongine | H | NH2 | OH | αH | βCH3 | βCH3 | βCH3 | IV | [46,50,52] |
175 | Glycinylilimaquinone | H | NHCH2COOH | OH | αH | βCH3 | βCH3 | βCH3 | IV | [46] |
176 | 5-epi-Nakijiquinone S | H | OH | αH | αCH3 | βCH3 | βCH3 | V | [47] | |
177 | 5-epi-Nakijiquinone Q | H | OH | αH | αCH3 | βCH3 | βCH3 | V | [47] | |
178 | 5-epi-Nakijiquinone T | H | OH | αH | αCH3 | βCH3 | βCH3 | V | [47] | |
179 | 5-epi-Nakijiquinone U | H | NH(CH2)3SCH3 | OH | αH | αCH3 | βCH3 | βCH3 | V | [47] |
180 | 5-epi-Nakijiquinone N | H | NH(CH2)2CH(CH3)2 | OH | αH | αCH3 | βCH3 | βCH3 | V | [47] |
181 | 5-epi-Nakijinol C | OH | OCH3 | CH3 | αH | αCH3 | βCH3 | βCH3 | VI | [47] |
182 | 5-epi-Nakijinol D | CH3 | CH3 | - | αH | αCH3 | βCH3 | βCH3 | VII | [47] |
183 | Dysidaminone A | NHCH2CH(CH3)2 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
184 | Dysidaminone B | NHCH2CH(CH3)CH2CH3 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
185 | Dysidaminone C | H | N(CH3)2 | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
186 | Dysidaminone D | N(CH3)2 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
187 | Dysidaminone E | H | NHCH2CH(CH3)2 | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
188 | Dysidaminone F | H | NHCH2CH(CH3)CH2CH3 | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
189 | Dysidaminone G | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] | |
190 | Dysidaminone H | H | NHCH3 | H | αH | βCH3 | βCH3 | βCH3 | I | [48] |
191 | Dysidaminone I | NHCH3 | H | H | αH | βCH3 | βCH3 | βCH3 | I | [48] |
192 | Dysidaminone J | H | N(CH3)2 | H | αH | βCH3 | βCH3 | βCH3 | I | [48] |
193 | Dysidaminone K | NHCH2CH(CH3)2 | H | H | αH | βCH3 | βCH3 | βCH3 | I | [48] |
194 | Dysidaminone L | NHCH2CH(CH3)CH2CH3 | H | H | αH | βCH3 | βCH3 | βCH3 | I | [48] |
195 | Dysidaminone M | H | H | αH | βCH3 | βCH3 | βCH3 | I | [48] | |
196 | 18-Methylaminoavarone | H | NHCH3 | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
197 | 19-Methylaminoavarone | NHCH3 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
198 | 18-Aminoavarone | H | NH2 | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
199 | 19-Aminoavarone | NH2 | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] |
200 | 18-Phenethylaminoavarone | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] | |
201 | Popolohuanone D | H | H | αH | βCH3 | βCH3 | βCH3 | III | [48] | |
202 | (-)-Nakijinol E | OH | OCH3 | H | CH3 | βCH3 | βCH3 | βCH3 | II | [49] |
203 | (+)-5-epi-Nakijinol E | OH | OCH3 | H | CH3 | αCH3 | βCH3 | βCH3 | II | [49] |
204 | Nakijinone A | CH3 | OCH3 | H | CH3 | βCH3 | βCH3 | βCH3 | VIII | [49] |
205 | 5-epi-Nakijinone A | CH3 | OCH3 | H | CH3 | αCH3 | βCH3 | βCH3 | VIII | [49] |
206 | 18-Deoxy-18-formamidodictyoceratin B | COOCH3 | NHCHO | OH | βH | αCH3 | αCH3 | αCH3 | IX | [50] |
207 | 18-Deoxy-18-(2-hydroxyacetyl)aminodictyoceratin B | COOCH3 | NHCOCH2OH | OH | βH | αCH3 | αCH3 | αCH3 | IX | [50] |
208 | N-Methyl-ent-smenospongine | H | NHCH3 | OH | βH | αCH3 | αCH3 | αCH3 | I | [50] |
209 | N-Methyl-5-epi-smenospongine | H | NHCH3 | OH | αH | αCH3 | βCH3 | βCH3 | I | [50] |
210 | 20-Demethoxy-20-methylaminodactyloquinone D | H | NHCH3 | - | αH | βCH3 | βCH3 | βCH3 | X | [50,54] |
211 | 20-Demethoxy-20-methylamino-5-epidactylo-quinone D | H | NHCH3 | - | αH | βCH3 | βCH3 | βCH3 | IV | [50] |
212 | 20-Demethoxy-20-methylaminodactyloquinone B | H | NHCH3 | - | - | αCH3 | βCH3 | βCH3 | XI | [50] |
213 | 5-epi-Smenospongine | H | NH2 | OH | αH | αCH3 | βCH3 | βCH3 | IV | [50] |
214 | Smenospongiadine | H | OH | αH | βCH3 | βCH3 | βCH3 | IV | [50] | |
215 | Dactylospongin A | H | OH | H | βH | αCH3 | αCH3 | αCH3 | XII | [51] |
216 | Dactylospongin B | H | OH | H | αH | βCH3 | βCH3 | βCH3 | XIII | [51] |
217 | Dactylospongin C | NHCHO | H | H | βH | αCH3 | αCH3 | αCH3 | XIV | [51] |
218 | Dactylospongin D | NHCHO | H | H | αH | βCH3 | βCH3 | βCH3 | XV | [51] |
219 | ent-Melemeleone B | NHCH2CH2SO3H | H | H | βH | αCH3 | αCH3 | αCH3 | V | [51] |
220 | Melemeleone C | H | NHCH2CH2SO3H | H | βH | αCH3 | αCH3 | αCH3 | V | [51] |
221 | Melemeleone D | NHCH2CH2SO3H | H | H | αH | βCH3 | βCH3 | βCH3 | IV | [51] |
222 | Melemeleone E | H | NHCH2CH2SO3H | - | αH | βCH3 | βCH3 | βCH3 | XVI | [51] |
223 | Dysidaminone N | H | H | αH | βCH3 | βCH3 | βCH3 | IV | [51] | |
224 | Nakijiquinone V | H | OH | αH | βCH3 | βCH3 | βCH3 | IV | [52] | |
225 | Cinerol A | H | OH | - | αH | βCH3 | βCH3 | βCH3 | XVII | [53] |
226 | Cinerol B | H | OH | - | αH | βCH3 | βCH3 | βCH3 | XVIII | [53] |
227 | Cinerol C | H | OH | H | αH | βCH3 | βCH3 | βCH3 | VI | [53] |
228 | Cinerol D | H | OH | CH3 | αH | βCH3 | βCH3 | βCH3 | VI | [53] |
229 | Cinerol E | H | OH | H | CH3 | βCH3 | βCH3 | βCH3 | II | [53] |
230 | Cinerol F | H | OH | H | αH | βCH3 | βCH3 | βCH3 | XIX | [53] |
231 | Cinerol G | H | OH | CH3 | αH | βCH3 | βCH3 | βCH3 | XIX | [53] |
232 | Cinerol H | H | H | αH | βCH3 | βCH3 | βCH3 | XIV | [53] | |
233 | Cinerol I | H | H | αH | βCH3 | βCH3 | βCH3 | XIV | [53] | |
234 | Cinerol J | NHCHO | H | H | αH | βCH3 | βCH3 | βCH3 | XIV | [53] |
235 | Cinerol K | NHCOCH2CH(CH3)2 | H | H | αH | βCH3 | βCH3 | βCH3 | XIV | [53] |
236 | 20-Demethoxy-20-isopentylaminodactyloquinone D | H | NH(CH2)2CH(CH3)2 | - | αH | βCH3 | βCH3 | βCH3 | X | [54] |
237 | 20-Demethoxy-20-isobutylaminodactyloquinone D | H | NHCH2CH(CH3)2 | - | αH | βCH3 | βCH3 | βCH3 | X | [54] |
238 | Smenospongiarine | H | NH(CH2)2CH(CH3)2 | OH | βH | αCH3 | αCH3 | αCH3 | I | [54] |
239 | Smenospongorine | H | NHCH2CH(CH3)2 | OH | βH | αCH3 | αCH3 | αCH3 | I | [54] |
240 | Smenospongimine | H | NHCH3 | OH | βH | αCH3 | αCH3 | αCH3 | I | [54] |
241 | (+)-19-Methylaminoavarone | NHCH3 | H | H | αH | βCH3 | βCH3 | βCH3 | V | [55] |
242 | (−)-20-Phenethylaminoavarone | H | H | αH | βCH3 | βCH3 | βCH3 | V | [55] | |
243 | (−)-20-Methylaminoavarone | H | NHCH3 | H | αH | βCH3 | βCH3 | βCH3 | V | [55] |
244 | Dysidinoid B | H | H | - | αH | βCH3 | βCH3 | βCH3 | XX | [56] |
245 | Dysicigyhone A | H | OH | CH3 | αH | βCH3 | βCH3 | βCH3 | XXI | [56] |
246 | 5-epi-Nakijiquinone L | H | NHCH2CH(CH3)CH2CH3 | OH | αH | αCH3 | βCH3 | βCH3 | IV | [57] |
247 | 5-epi-Smenospongiarine | H | NH(CH2)2CH(CH3)2 | OH | αH | αCH3 | βCH3 | βCH3 | IV | [57] |
Classification | Family | Species | Type | Reference |
---|---|---|---|---|
Plant | Celastraceae | Maytenus mekongensis; M. spinosa; M. oblongata | Dihydroagarofuran | [17,25,30] |
Tripterygium wilfordii; T. regelii; T. hypoglaucum | [18,20,21,23,24,26,28,29,31,32,33,36] | |||
Celastrus orbiculatus; C. angulatus; C. paniculatus | [19,34,37] | |||
Euonymus alatus | [22] | |||
Monimopetalum chinense | [35] | |||
Saxifragaceae | Parnassia wightiana | [27] | ||
Zingiberaceae | Curcuma phaeocaulis | Eudesmane; Elemene | [63] | |
Asteraceae | Inula helenium L. | Eudesmane | [68] | |
Onopordum alexandrinum | Germacrane; Elemene | [79] | ||
Vladimiria souliei | Guaiane | [93] | ||
Burseraceae | Resina commiphora | Cadinane | [72] | |
Phyllanthaceae | Phyllanthus acidus (L.) skeels | Bisabolane | [75] | |
Magnoliaceae | Magnolia kobus | Germacrane | [76] | |
Lamiaceae | Salvia scapiformis | Germacrane | [78] | |
Myoporaceae | Myoporum bontioides | Farnesane | [83] | |
Valerianaceae | Valeriana officinalis var. latifolia | Valerane | [88] | |
Nardostachys chinensis | Nornardosinane-aristolane | [92] | ||
Sponge | Dysiseidae | Dysidea sp.; D. avara; D. fragilis; D. cinerea; D. septosa | friedo-drimane | [43,45,48,53,55,56] |
Thorectidae | Dactylospongia sp.; D. elegans; D. metachromia | [44,47,51,52,54] | ||
Smenospongia aurea, S. cerebriformis, and Verongula rigida | [49] | |||
Verongula cf. rigida Esper | [57] | |||
Spongiidae | Hippospongia sp. | [46] | ||
Spongiapertusa Esper | [50] | |||
Halichodriae | Halichondria sp.; H. okadai | Eudesmane; Cadinane; Spiroaxane; Aromadendrane; Bisabolane; Pupukeanane; Salvialane; Aristolane; Iresane | [60,61,62,65,69,74,77] | |
Axinyssa sp.; A. variabilis | Eudesmane; Cadinane; Bisabolene | [66,70] | ||
Thorectidae | Fasciospongia sp. | Farnesane | [82] | |
Soft coral | Xeniidae | Cespitularia taeniata | Eudesmane | [64] |
Clavulariidae | Clavularia koellikeri | Nardosinane | [94] | |
Phyllidid nudibranchs | Phyllidiidae | Phyllidiella sp.; P. pustulosa; P. ocellata | Eudesmane; Cadinane; Bisabolane; Farnesane, spiroaxane; aromadendrane; pupukeanane; Axane | [67,71] |
Marine slug | Dotidae | Doto pinnatifida | Farnesane | [81] |
Fungus | Trichocomaceae | Aspergillus ochraceus; A. aculeatus | Drimane; Daucane | [38,39,85] |
Talaromyces minioluteus | Drimane | [40] | ||
Emericella sp. | Farnesane | [80] | ||
Eurotiaceae | Penicillium sp. ZZ1283. | Drimane | [41] | |
Parmulariaceae | Paraconiothynium brasiliense; P. sporulosum | Bisabolane; Bergamotane | [73,87] | |
Phanerochaetaceae | Ceriporia lacerate | Tremulane | [84] | |
Diaporthaceae | Diaporthe sp. | Brasilane | [86] | |
Moniliaceae | Trichoderma asperellum | Cyclonerane | [89] | |
Pezizaceae | Cochliobolus lunatus | Eremophilane | [91] | |
Bacteria | Pseudomonadaceae | Saccharomonospora sp. CNQ-490 | Drimane | [42] |
Actinomyces | Streptomycetaceae | Streptomyces sp. | Drimane; Zizaane | [58,59,90] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.-L.; Wang, B.-W.; Sun, Z.-C.; Yang, J.-S.; Xu, X.-D.; Ma, G.-X. Natural Nitrogenous Sesquiterpenoids and Their Bioactivity: A Review. Molecules 2020, 25, 2485. https://doi.org/10.3390/molecules25112485
Chen D-L, Wang B-W, Sun Z-C, Yang J-S, Xu X-D, Ma G-X. Natural Nitrogenous Sesquiterpenoids and Their Bioactivity: A Review. Molecules. 2020; 25(11):2485. https://doi.org/10.3390/molecules25112485
Chicago/Turabian StyleChen, De-Li, Bo-Wen Wang, Zhao-Cui Sun, Jun-Shan Yang, Xu-Dong Xu, and Guo-Xu Ma. 2020. "Natural Nitrogenous Sesquiterpenoids and Their Bioactivity: A Review" Molecules 25, no. 11: 2485. https://doi.org/10.3390/molecules25112485
APA StyleChen, D. -L., Wang, B. -W., Sun, Z. -C., Yang, J. -S., Xu, X. -D., & Ma, G. -X. (2020). Natural Nitrogenous Sesquiterpenoids and Their Bioactivity: A Review. Molecules, 25(11), 2485. https://doi.org/10.3390/molecules25112485