Antitumor Activity of New Olivacine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
3. Materials and Methods
3.1. Tested Compounds
3.2. Cell Lines and Conditions
3.3. DCF-DA Assay
3.4. MTT Assay
3.5. Accumulation of Rhodamine 123
3.6. Detection of Apoptosis
3.7. Proliferation Inhibition—Mitotic Index
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gębarowska, E.; Zabel, M.; Majewski, A.; Kołodziej, J. Evaluation of individual sensitivity to cytostatic drugs of in vitro cultured lung tumor cells. Folia Histochem. Cytobiol. 1999, 33, 135–136. [Google Scholar]
- Shoemaker, R.H. The NCI60 human tumor cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, N.; Nagarajan, R. Total synthesis of ellipticine quinones, olivacine, and calothrixin b. J. Org. Chem. 2014, 79, 736–741. [Google Scholar] [CrossRef]
- Monnot, M.; Mauffret, O.; Simon, V.; Lescot, E.; Psaume, B.; Saucier, J.M.; Charra, M.; Belehradek, J.; Fermandjian, S. DNA-drug recognition, and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J. Biol. Chem. 1991, 66, 1820–1829. [Google Scholar]
- Fosse, P.; Rene, B.; Charra, M.; Paoletti, C.; Saucier, J.M. Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: Structure-activity relationship. Mol. Pharmacol. 1992, 42, 590–595. [Google Scholar] [PubMed]
- Froelich-Ammon, S.J.; Patchan, M.W.; Osheroff, N.; Thompson, R.B. Topoisomerase II binds to ellipticine in the absence or presence of DNA: Chaeacterization of enzyme drug interactions by fluorescence spectroscopy. J. Biol. Chem. 1995, 270, 14998–15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Li, C.; Chen, L.; Sebti, S.; Chen, J. Rescue of mutant p53 transcription function by ellipticine. Oncogene 2003, 22, 4478–4487. [Google Scholar] [CrossRef] [Green Version]
- Sugikawa, E.; Hosoi, T.; Yazaki, N.; Gamanuma, M.; Nakanishi, N.; Ohashi, M. Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anticancer Res. 1999, 19, 3099–3108. [Google Scholar]
- Miller, C.M.; O’Sullivan, E.C.; McCarthy, F.O. Novel 11-substituted ellipticines as potent anticancer agents with divergent activity against cancer cells. Pharmaceuticals 2019, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Malonne, H.; Atassi, G. DNA topoisomerase targeting drugs: Mechanisms of action and perspectives. Anticancer. Drugs 1997, 8, 811–822. [Google Scholar] [CrossRef]
- Le Mée, S.; Pierré, A.; Markovits, J.; Atassi, G.; Jacquemin-Sablon, A.; Saucier, J.M. S16020-2, a new highly cytotoxic antitumor olivacine derivative: DNA interaction and DNA topoisomerase II inhibition. Mol. Pharmacol. 1998, 53, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Sotelo, E. 1,5-Dimethyl-6H-pyridazino[4–5-b]carbazole, a 3-aza bioisoster of the antitumor alkaloid olivacine. Chem. Pharm. Bull. 2002, 50, 1479–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichard-Garcia, L.; Weaver, R.J.; Eckett, N.; Scarfe, G.; Fabre, J.M.; Lucas, C.; Maurel, P. The olivacine derivative S 16020 (9-hydroxy-5,6-dimethyl-N-[2-(dimethylamino)ethyl)-6H-pyrido(4,3-b) -carbazole-1-carboxamide) induces CYP1A and its own metabolism in human hepatocytes in primary culture. Drug Metab. Dispos. 2004, 32, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasztold-Howorko, R.; Tylińska, B.; Bbiaduń, O.; Barowski, T.G.; Gasiorowski, K. New pyridocarbazole derivatives. Synthesis and their in vitro anticancer activity. Acta Pol. Pharm.—Drug Res. 2013, 70, 823–832. [Google Scholar]
- Moreira, H.; Szyjka, A.; Gasiorowski, K. Chemopreventive activity of celastrol in drug-resistant human colon carcinoma cell cultures. Oncotarget 2018, 9, 21211–21233. [Google Scholar] [CrossRef] [Green Version]
- Pierré, A.; Léonce, S.; Pérez, V.; Atassi, G. Circumvention of P-glycoprotein-mediated multidrug resistance by S16020–2: Kinetics of uptake and efflux in sensitive and resistant cell lines. Cancer Chemother. Pharmacol. 1998, 42, 454–460. [Google Scholar] [CrossRef]
- Juan, E.; Le Vée, M.; Mayati, A.; Denizot, C.; Parmentier, Y.; Fardel, O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics 2016, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and drug-resistant LoVo/Dx cells. Biomed. Pharmacother. 2017, 88, 232–241. [Google Scholar] [CrossRef]
- Purohit, V.; Simeone, D.M.; Lyssiotis, C.A. Metabolic regulation of redox balance in cancer. Cancers (Basel) 2019, 11, 955. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.R.; Tay, Y. The Yin-Yang regulation of reactive oxygen species and microRNAs in cancer. Int. J. Mol. Sci. 2019, 20, 5335. [Google Scholar] [CrossRef] [Green Version]
- Moreira, H.; Szyjka, A.; Paliszkiewicz, K.; Barg, E. Prooxidative Activity of Celastrol Induces Apoptosis, DNA Damage, and Cell Cycle Arrest in Drug-Resistant Human Colon Cancer Cells. Oxid. Med. Cell. Longev. 2019, 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, A.K. Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharmacogenom. J. 2010, 10, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szuławska, A.; Czyz, M. Molecular mechanisms of anthracyclines action. Postępy Higieny Medycyny Doświadczalnej (Online) 2006, 60, 78–100. [Google Scholar]
- Wartenberg, M.; Ling, F.C.; Müschen, M.; Klein, F.; Acker, H.; Gassmann, M.; Petrat, K.; Pütz, V.; Hescheler, J.; Sauer, H. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 2003, 17, 503–505. [Google Scholar] [CrossRef]
- Tylinska, B.; Jasztold-Howorko, R.; Kowalczewska, K.; Szczaurska-Nowak, K.; Gbarowski, T.; Wietrzyk, J. Design, synthesis and analysis of anticancer activity of new SAR-based S16020 derivatives. Acta Pol. Pharm.—Drug Res. 2018, 75, 1313–1320. [Google Scholar] [CrossRef]
- Singh, M.P.; Hill, G.C.; Péoc’h, D.; Rayner, B.; Imbach, J.L.; Lown, J.W. High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry 1994, 33, 10271–10285. [Google Scholar] [CrossRef]
- Chu, Y.; Hsu, M.T. Ellipticine increase the superhelical density of intracellular SV40 DNA by intercalation. Nucleic Acids Res. 1992, 20, 4033–4038. [Google Scholar] [CrossRef]
- El-Deiry, W.S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003, 22, 7486–7495. [Google Scholar] [CrossRef] [Green Version]
- Wiman, K.G. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ. 2006, 13, 921–926. [Google Scholar] [CrossRef]
- Bykov, V.J.N.; Issaeva, N.; Shilov, A.; Hultcrantz, M.; Pugacheva, E.; Chumakov, P.; Bergman, J.; Wiman, K.G.; Selivanova, G. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 2002, 8, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, J.; Tong, J.H.M.; Chan, A.W.H.; Yu, J.; Kang, W.; To, K.F. Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int. J. Mol. Sci. 2019, 20, 5999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gębarowski, T.; Wiatrak, B.; Gębczak, K.; Tylińska, B.; Gąsiorowski, K. Effect of new olivacine derivatives on p53 protein level. Pharmacol. Rep. 2020, 72, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds 1, 2, 3, and 4 are available from the authors. |
Cell Line | IC50 [µM] | |||
---|---|---|---|---|
Compound | LoVo | LoVo/DX | NHDF | |
1 | 4.84 ± 1.03 | 16.42 ± 0.49 | 74.03 ± 5.12 | |
2 | 13.50 ± 0.80 | 20.03 ± 3.86 | 58.78 ± 2.14 | |
3 | 15.43 ± 0.26 | 22.21 ± 0.79 | 41.08 ± 4.77 | |
4 | 9.37 ± 0.13 | 19.36 ± 2.43 | 52.30 ± 2.43 | |
Ellipticine | 4.28 ± 0.53 | 18.16 ± 0.34 | 22.45 ± 3.14 |
Cell Line | Cell Line | |||
---|---|---|---|---|
Compound | LoVo | LoVo/DX | NHDF | |
1 | 2.3 ± 0.9 | 4.2 ± 0.9 | 20.3 ± 7.8 | |
2 | 5.8 ± 2.9 | 6.5 ± 1.9 | 23.5 ± 12.6 | |
3 | 7.4 ± 2.9 | 12.5 ± 2.2 | 21.4 ± 1.6 | |
4 | 3.2 ± 0.7 | 4.7 ± 1.0 | 18.9 ± 2.1 | |
Ellipticine | 3.4 ± 1.0 | 7.0 ± 3.7 | 21.2 ± 7.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasny, J.; Wiatrak, B.; Dobosz, A.; Tylińska, B.; Gębarowski, T. Antitumor Activity of New Olivacine Derivatives. Molecules 2020, 25, 2512. https://doi.org/10.3390/molecules25112512
Piasny J, Wiatrak B, Dobosz A, Tylińska B, Gębarowski T. Antitumor Activity of New Olivacine Derivatives. Molecules. 2020; 25(11):2512. https://doi.org/10.3390/molecules25112512
Chicago/Turabian StylePiasny, Janusz, Benita Wiatrak, Agnieszka Dobosz, Beata Tylińska, and Tomasz Gębarowski. 2020. "Antitumor Activity of New Olivacine Derivatives" Molecules 25, no. 11: 2512. https://doi.org/10.3390/molecules25112512
APA StylePiasny, J., Wiatrak, B., Dobosz, A., Tylińska, B., & Gębarowski, T. (2020). Antitumor Activity of New Olivacine Derivatives. Molecules, 25(11), 2512. https://doi.org/10.3390/molecules25112512