Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties of iLOV and iLOV-W83A
2.2. Properties of Ag Nanoparticles and Fluorescent Proteins
2.3. Steady-State Fluorescence Spectroscopy of iLOV–Ag Nanoparticle Mixtures
2.4. Fluorescence Lifetime of iLOV and iLOV–Ag Nanoparticle Mixtures
2.5. The Interaction of iLOV Protein with Different Sizes of Ag Nanoparticles
2.6. Electron-Transfer Pathway between iLOV and Ag Nanoparticles
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis of Ag Nanoparticles and iLOV–Ag Nanoparticles
3.2.2. Characterization
3.2.3. Time-Resolved Fluorescence Measurements
3.2.4. Protein Expression and Purification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Qu, L.; Wu, H.; Kong, H.; Yang, Z.; Chen, D.; Mäkilä, E.; Salonen, J.; Santos, H.A.; et al. Gold nanorods conjugated porous silicon nanoparticle encapsulated in calcium alginate nano hydrogels using microemulsion templates. Nano Lett. 2018, 18, 7b05210. [Google Scholar] [CrossRef] [PubMed]
- Garabagiu, S.A. spectroscopic study on the interaction between gold nanoparticles and hemoglobin. Mater. Res. Bull. 2011, 46, 2474–2477. [Google Scholar] [CrossRef]
- Alipilakkotte, S.; Sreejith, L. Green synthesized PLA/silver nanoparticle probe for sensing of hydrogen peroxide in biological samples. Mater. Lett. 2018, 217, 33–38. [Google Scholar] [CrossRef]
- Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Nanoparticle Regrowth Enhances Photoacoustic Signals of Semiconducting Macromolecular Probe for In Vivo Imaging. Adv. Mater. 2017, 29, 1703693. [Google Scholar] [CrossRef]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941. [Google Scholar] [CrossRef]
- Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourg hadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24, 233. [Google Scholar] [CrossRef]
- Lai, Y.; Lin, C.; Chung, M.; Hung, P.; Horng, J.; Chen, I.; Chu, L. Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through polyproline helices. J. Phys. Chem. C 2017, 121, 4882–4890. [Google Scholar] [CrossRef]
- Sen, T.; Haldar, K.K.; Patra, A. Au nanoparticle-based surface energy transfer probe for conformational changes of BSA protein. J. Phys. Chem. C 2008, 112, 17945–17951. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.R.; Sarma, R.K.; Saikia, R.; Kale, V.S.; Shelke, M.V.; Sengupta, P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloid Surface B 2011, 83, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Nunes, F.D.; de Araujo, R.E. Optical properties of silver nanoplates and perspectives for biomedical applications. Photonic Nanostruct. 2018, 31, 160–167. [Google Scholar] [CrossRef]
- La Spada, L.; Vegni, L. Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 2018, 11, 603. [Google Scholar] [CrossRef] [Green Version]
- McFarland, A.D.; Van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Khatami, M.; Varma, R.S.; Zafarnia, N.; Yaghoobi, H.; Sarani, M.; Kumar, V.G. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 2018, 10, 9–15. [Google Scholar] [CrossRef]
- Chandirika, J.U.; Annadurai, G. Biosynthesis and Characterization of Silver Nanoparticles Using Leaf Extract Abutilon indicum. Glob. J. Biotechnol. Biochem. 2018, 13, 7–11. [Google Scholar]
- Khatami, M.; Norr, F.G.; Ahmadi, S.; Aflatoonia, M. Biosynthesis of Ag nanoparticles using Salicornia bigelovii and its antibacterial activity. Electron. Physician. 2018, 10, 6733. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, D.M.; Santillán, J.M.; Arce, V.B.; van Raap, M.B.F.; Muraca, D.; Fernández, M.A.; Scaffardi, L.B. A simple and “green” technique to synthesize long-term stability colloidal Ag nanoparticles: Fs laser ablation in a biocompatible aqueous medium. Mater. Charact. 2018, 140, 320–332. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, A.K.; Samanta, P.K.; Aich, D.; Saha, S.; Kamilya, T. Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin. J. Phys. D Appl. Phys. 2015, 48, 235305. [Google Scholar] [CrossRef]
- Delfino, I.; Cannistraro, S. Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Biophys. Chem. 2009, 139, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopka, B.; Margerl, K.; Savitsky, A.; Davari, M.D.; Rollen, K.; Bocola, M.; Dick, B.; Schwaneberg, U.; Jaeger, K.E.; Krauss, U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci. Rep.-UK. 2017, 7, 13346. [Google Scholar] [CrossRef]
- Ravikumar, Y.; Nadarajan, S.P.; Lee, C.S.; Rhee, J.K.; Yun, H. A new generation fluorescent based metal sensor-iLOV protein. J. Microbiol. Biotechnol. 2015, 25, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.E.; Brooks, A.E.; Cann, B.; Simoes-Barbosa, A. The fluorescent protein iLOV outperforms eGFP as a reporter gene in the microaerophilic protozoan Trichomonas vaginalis. Mol. Biochem. Parasit. 2016, 216, 1–4. [Google Scholar] [CrossRef]
- Dang, X.; Chalkias, S.; Koralnik, I.J. JC virus-iLOV fluorescent strains enable the detection of early and late viral protein expression. J. Virol. Methods 2015, 223, 25–29. [Google Scholar] [CrossRef]
- Acikgoz, S.; Ulusu, Y.; Akin, S.; Sonmezoglu, S.; Gokce, I.; Inci, M.N. Photoinduced electron transfer mechanism between green fluorescent protein molecules and metal oxide nanoparticles. Ceram Int. 2014, 40, 2943–2951. [Google Scholar] [CrossRef]
- Khrenova, M.G.; Nemukhin, A.V.; Domratcheva, T. Theoretical characterization of the flavin-based fluorescent protein iLOV and its Q489K mutant. J. Phys. Chem. B 2015, 119, 5176–5183. [Google Scholar] [CrossRef]
- Avouris, P.; Persson, B.N. Excited states at metal surfaces and their nonradiative relaxation. J. Phys. Chem. 1984, 88, 837–848. [Google Scholar] [CrossRef]
- Davari, M.D.; Kopka, B.; Wingen, M.; Bocola, M.; Prepper, T.; Jaeger, K.E.; Schwaneberg, U.; Krauss, U. Photophysics of the LOV-based fluorescent protein variant iLOV-Q489K determined by simulation and experiment. J. Phys. Chem. B 2016, 120, 3344–3352. [Google Scholar] [CrossRef] [PubMed]
- Dulkeinth, E.; Ringler, M.; Klar, K.A.; Feldmann, J.; Murioz, A.; Parak, W.J. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 2005, 5, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Cannone, F.; Chirico, G.; Bizzarri, A.R.; Cannistraro, S. Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticle. J. Phys. Chem. B 2006, 110, 16491–16498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Y.; Lakowicz, J.R. Enhanced forster resonance energy transfer (FRET) on a single metal particle. J. Phys. Chem. C 2007, 111, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhong, J.; Gan, X.; Fan, C.; Li, G.; Matsuda, N. Wiring electrons of cytochrome C with silver nanoparticles in Layered Films. Chemphyschem 2003, 4, 1364. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Rana, U.; Malik, S. Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate. ACS Appl. Mater. Inter. 2015, 7, 10457–10465. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Liu, C.L.; Ren, X.Y.; Yang, H.J.; Yang, J.X.; Yong, H. Preparation of high-stable and monodisperse colloidal silver nanoparticles. Precious Metal. 2011, 32, 19–24. [Google Scholar]
Sample Availability: Samples of iLOV plasmid is available from the authors. |
Ag Nanoparticles | 0 μL | 5 μL | 20 μL | 140 μL |
---|---|---|---|---|
A1 (τ1 = 4.8 ns) | 100% | 63.98% | 49.75% | 37.97% |
A2 (τ2 = 2.7 ns) | 0 | 36.02% | 50.25% | 62.03% |
Fitting equation: I(t) = I0 + A1exp(−t/τ1) + A2exp(−t/τ2) |
System | τ1 (ns) | τ2 (ns) | Efficiency (%) |
---|---|---|---|
Free iLOV | 4.8 | ||
iLOV with 67 nm Ag nanoparticles | 4.8 | 2.5 | 47.92 |
iLOV with 29 nm Ag nanoparticles | 4.8 | 2.7 | 43.75 |
iLOV with 15 nm Ag nanoparticles | 4.8 | 2.9 | 39.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Zhang, Q.; Zhang, Y.; Chen, J.; Wei, Z.; He, Y.; Guo, L. Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles. Molecules 2020, 25, 2544. https://doi.org/10.3390/molecules25112544
Ran X, Zhang Q, Zhang Y, Chen J, Wei Z, He Y, Guo L. Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles. Molecules. 2020; 25(11):2544. https://doi.org/10.3390/molecules25112544
Chicago/Turabian StyleRan, Xia, Qianqian Zhang, Yu Zhang, Jin Chen, Zhongran Wei, Yulu He, and Lijun Guo. 2020. "Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles" Molecules 25, no. 11: 2544. https://doi.org/10.3390/molecules25112544
APA StyleRan, X., Zhang, Q., Zhang, Y., Chen, J., Wei, Z., He, Y., & Guo, L. (2020). Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles. Molecules, 25(11), 2544. https://doi.org/10.3390/molecules25112544