Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Chemicals
2.2. Plant Material and Preparation of Leaf Extract
2.3. Total Phenolic Content
2.4. Total Proanthocyanidin Content
2.5. Identification and Quantification of Phenolic and Alkaloid Compounds by HPLC-ESI-DAD-MS/MS
2.5.1. Analysis of Alkaloids
2.5.2. Analysis of Polyphenolic Compounds
2.6. Antioxidant Activity
2.6.1. ABTS
2.6.2. DPPH
2.6.3. FRAP
2.7. Antiproliferative Activity
2.7.1. Cell Cultures
2.7.2. MTT Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of Polyphenolic Compounds in Extracts of Cherimoya and Atemoya Leaves
3.2. Identification and Quantification of Alkaloid Compounds in Extracts of Cherimoya and Atemoya Leaves
3.3. Principal Component Analysis (PCA) Discriminates the Different Genotypes
3.4. Evaluation of Antioxidant Properties in Extracts of Cherimoya and Atemoya Leaves
3.5. Evaluation of Antiproliferative Activity in Extracts of Cherimoya and Atemoya Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; del Carmen Flores-Vallejo, R.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, R.; Balick, M.J. The value of undiscovered pharmaceuticals in tropical forests. Econ. Bot. 1995, 49, 223–228. [Google Scholar] [CrossRef]
- Gentile, C.; Di Gregorio, E.; Di Stefano, V.; Mannino, G.; Perrone, A.; Avellone, G.; Sortino, G.; Inglese, P.; Farina, V. Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chem. 2019, 277, 471–479. [Google Scholar] [CrossRef]
- Mannino, G.; Perrone, A.; Campobenedetto, C.; Schittone, A.; Margherita Bertea, C.; Gentile, C. Phytochemical profile and antioxidative properties of Plinia trunciflora fruits: A new source of nutraceuticals. Food Chem. 2020, 307, 125515. [Google Scholar] [CrossRef]
- Farina, V.; Tinebra, I.; Perrone, A.; Sortino, G.; Palazzolo, E.; Mannino, G.; Gentile, C. Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy 2020, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Anaya-Esparza, L.M.; Ramírez-Marez, M.V.; Montalvo-González, E.; Sánchez-Burgos, J.A. Cherimoya (Annona cherimola Mill.). Fruit Veg. Phytochem. Chem. Hum. Heal. 2nd Ed. 2017, 1, 993–1002. [Google Scholar]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Oliveira, M.B.; Bento, A.C.; Costa, H.S. Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef]
- Quílez, A.M.; Fernández-Arche, M.A.; García-Giménez, M.D.; De la Puerta, R. Potential therapeutic applications of the genus Annona: Local and traditional uses and pharmacology. J. Ethnopharmacol. 2018, 225, 244–270. [Google Scholar] [CrossRef]
- Justino, A.B.; Miranda, N.C.; Franco, R.R.; Martins, M.M.; da Silva, N.M.; Espindola, F.S. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Pharmacother. 2018, 100, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Gavamukulya, Y.; Abou-Elella, F.; Wamunyokoli, F.; AEl-Shemy, H. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac. J. Trop. Med. 2014, 7, S355–S363. [Google Scholar] [CrossRef] [Green Version]
- Hamizah, S.; Roslida, A.H.; Fezah, O.; Tan, K.L.; Tor, Y.S.; Tan, C.I. Chemopreventive potential of Annona muricata L leaves on chemically-induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 2012, 13, 2533–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Chaghaby, G.A.; Ahmad, A.F.; Ramis, E.S. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves. Arab. J. Chem. 2014, 7, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Rosdi, M.N.M.; Daud, N.; Zulkifli, R.M.; Yaakob, H. Cytotoxic effect of Annona muricata Linn leaves extract on Capan-1 cells. J. Appl. Pharm. Sci. 2015, 5, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Díaz-de-Cerio, E.; Aguilera-Saez, L.M.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef]
- Arunjyothi, B.; Venkatesh, K.; Chakrapani, P.; Anupalli, R.R. Phytochemical and Pharmacological potential of Annona cherimola-A Review. Int. J. Phytomed. 2011, 3, 439. [Google Scholar]
- Vanhove, W.; Van Damme, P. Value chains of cherimoya (Annona cherimola Mill.) in a centre of diversity and its on-farm conservation implications. Trop. Conserv. Sci. 2013, 6, 158–180. [Google Scholar] [CrossRef] [Green Version]
- Migliore, G.; Farina, V.; Tinervia, S.; Matranga, G.; Schifani, G. Consumer interest towards tropical fruit: Factors affecting avocado fruit consumption in Italy. Agric. Food Econ. 2017, 5, 24. [Google Scholar] [CrossRef]
- Gandhi, S.R.; Gopalkrishna, N. “The atemoya”, a promising new annona hybrid. In Proceedings of the Indian Academy of Sciences-Section B; Springer: Berlin, Germany, 1957; Volume 45, pp. 234–246. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Di Stefano, V.; Lauria, A.; Pitonzo, R.; Gentile, C. Vaccinium macrocarpon (Cranberry)-Based Dietary Supplements: Variation in Mass Uniformity, Proanthocyanidin Dosage and Anthocyanin Profile Demonstrates Quality Control Standard Needed. Nutrients 2020, 12, 992. [Google Scholar] [CrossRef] [Green Version]
- Vigliante, I.; Mannino, G.; Maffei, M.E. Chemical Characterization and DNA Fingerprinting of Griffonia simplicifolia Baill. Molecules 2019, 24, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Vigliante, I.; Mannino, G.; Maffei, M.E. OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. J. Funct. Foods 2019, 61, 103508. [Google Scholar] [CrossRef]
- Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area. Plant Foods Hum. Nutr. 2016, 71, 330–338. [Google Scholar] [CrossRef]
- Martorana, A.; Gentile, C.; Perricone, U.; Piccionello, A.P.; Bartolotta, R.; Terenzi, A.; Pace, A.; Mingoia, F.; Almerico, A.M.; Lauria, A. Synthesis, antiproliferative activity, and in silico insights of new 3-benzoylamino-benzo[b]thiophene derivatives. Eur. J. Med. Chem. 2015, 90, 537–546. [Google Scholar] [CrossRef]
- Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin Trans. 1 1972, 1387–1399. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Maffei, M.E. Chemical partitioning and DNA fingerprinting of some pistachio (Pistacia vera L.) varieties of different geographical origin. Phytochemistry 2019, 160, 40–47. [Google Scholar] [CrossRef]
- Naselli, F.; Belshaw, N.J.N.J.; Gentile, C.; Tutone, M.; Tesoriere, L.; Livrea, M.A.M.A.; Caradonna, F. Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity. J. Nutrigenet. Nutrigenomics 2015, 8, 114–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philipov, S.; Kande, K.M.; Machev, K. Alkaloids of Annona senegalensis. Fitoterapia 1995, 66, 275–276. [Google Scholar]
- Lúcio, A.S.S.C.; da Silva Almeida, J.R.G.; da-Cunha, E.V.L.; Tavares, J.F.; Barbosa Filho, J.M. Alkaloids of the Annonaceae: Occurrence and a compilation of their biological activities. In The Alkaloids: Chemistry and Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 74, pp. 233–409. ISBN 1099-4831. [Google Scholar]
- Matsushige, A.; Kotake, Y.; Matsunami, K.; Otsuka, H.; Ohta, S.; Takeda, Y. Annonamine, a new aporphine alkaloid from the leaves of Annona muricata. Chem. Pharm. Bull. 2012, 60, 257–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabêlo, S.V.; Costa, E.V.; Barison, A.; Dutra, L.M.; Nunes, X.P.; Tomaz, J.C.; Oliveira, G.G.; Lopes, N.P.; de F.C. Santos, M.; Almeida, J.R.G. Alkaloids isolated from the leaves of atemoya (Annona cherimola× Annona squamosa). Rev. Bras. Farmacogn. 2015, 25, 419–421. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Barreca, D.; Lagana, G.; Ficarra, S.; Tellone, E.; Leuzzi, U.; Galtieri, A.; Bellocco, E. Evaluation of the antioxidant and cytoprotective properties of the exotic fruit Annona cherimola Mill.(Annonaceae). Food Res. Int. 2011, 44, 2302–2310. [Google Scholar] [CrossRef]
- Biba, V.S.; Amily, A.; Sangeetha, S.; Remani, P. Anticancer, antioxidant and antimicrobial activity of Annonaceae family. World J. Pharm. Pharm. Sci 2014, 3, 1595–1604. [Google Scholar]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill.(cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Compos. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Baskar, R.; Rajeswari, V.; Kumar, T.S. In vitro antioxidant studies in leaves of Annona species. Indian J. Exp. Biol. IJEB 2007, 45, 480–485. [Google Scholar]
- Mayne, S.T. Antioxidant nutrients and chronic disease: Use of biomarkers of exposure and oxidative stress status in epidemiologic research. J. Nutr. 2003, 133, 933S–940S. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Rawling, T.; Roseblade, A.; Bishop, R.; Ung, A.T. Antiproliferative activities of alkaloid-like compounds. Medchemcomm 2017, 8, 2105–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volobuff, C.R.F.; Pederiva, M.M.C.; Benites, R.S.R.; Lima, C.J.; Argandoña, E.J.S.; Cardoso, C.A.L.; Pereira, Z.V.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E. Bioguided Fractionation, and Antioxidant, Antiproliferative, and Anti-Inflammatory Activity of Annona cacans Warm. J. Med. Food 2019, 22, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Genotypes | TPC | tPAC |
---|---|---|
Atemoya | 586.64 (12.09) bcd | 53.94 (1.23) d |
Campas | 639.34 (9.72) bc | 132.26 (3.93) a |
Chaffey | 569.72 (26.93) cd | 58.94 (1.15) c |
Daniela | 510.06 (82.12) d | 20.76 (0.41) f |
Fino de Jete | 650.75 (17.58) bc | 42.26 (1.56) e |
Torre1 | 362.76 (22.32) e | 8.45 (0.65) g |
Torre2 | 824.17 (35.67) a | 130.21 (2.23) a |
White | 652.99 (3.45) b | 75.98 (2.35) b |
# | Common Name | Atemoya | Campas | Chaffey | Daniela | Fino de Jete | Torre1 | Torre2 | White |
---|---|---|---|---|---|---|---|---|---|
1 | Anonaine | n.d. | 6.44 (1.17) a | n.d. | n.d. | 5.10 (1.06) a | n.d. | 5.38 (0.35) a | n.d. |
2 | Asimilobine | n.d. | 9.34 (1.1) a | n.d. | 8.07 (0.27) ab | 6.66 (1.12) b | n.d. | n.d. | 2.14 (0.18) c |
3 | Catechin | 164.01 (12.21) a | 21.28 (2.09) bc | 5.41 (0.17) d | 6.54 (0.30) d | 12.42 (0.82) cd | n.d. | 24.5 (2.27) bc | 28.79 (1.23) bc |
4 | Liriodenine | 3.80 (0.27) d | 94.09 (5.89) b | 121.21 (5.14) a | n.d. | 95.45 (20.44) b | 63.55 (7.11) c | n.d. | 9.08 (3.45) d |
5 | Quercetin 3-O-rutinoside-7-O-glucoside | 1.73 (0.02) bc | 1.06 (0.01) cd | n.d. | n.d. | 1.78 (0.20) bc | n.d. | 16.16 (1.41) a | 2.68 (0.19) b |
6 | Epicatechin | 26.31 (1.59) b | 12.02 (1.27) c | 6.33 (0.17) d | 14.29 (0.38) c | 10.27 (0.85) cd | n.d. | 56.27 (3.24) a | 24.24 (1.04) b |
7 | Quercetin 3-O-rutinoside-7-O-pentoside | 105.96 (3.93) a | 49.15 (4.70) d | 33.97 (2.07) e | 66.15 (2.60) c | 75.29 (2.14) b | 32.25 (2.23) ef | 68.24 (3.15) bc | 24.61 (0.64) f |
8 | Quercetin 3-O-rutinoside | 2831.24 (169.56) a | 1334.96 (107.40) cd | 1648.51 (106.92) c | 2107.17 (81.39) b | 2234.44 (82.05) b | 1015.96 (74.37) d | 3167.09 (277.08) a | 1127.45 (91.77) d |
10 | Kaempferol-3-Galactoside-7-Rhamnoside | 255.12 (19.35) b | 76.66 (0.35) f | 135.33 (11.78) e | 620.98 (1.01) a | 165.77 (0.69) d | 55.74 (1.21) fg | 210.62 (12.09) c | 41.84 (4.97) g |
11 | Quercetin-3-O-glucoside | 529.39 (18.69) d | 1016.21 (55.02) c | 1281.43 (53.81) c | 2593.92 (117.43) a | 2388.35 (79.54) a | 719.53 (22.55) d | 2087.92 (177.80) b | 2359.83 (133.23) ab |
12 | Kaempferol-3-O-glucoside | 6.58 (0.59) e | 22.44 (2.28) de | 26.73 (1.43) de | 337.09 (18.11) a | 74.2 (3.78) b | 48.16 (3.78) c | 25.71 (3.34) de | 36.19 (4.24) cd |
13 | Stepharine | 157.01 (4.22) c | 159.48 (4.93) c | 125.92 (11.3) d | 105.40 (5.47) de | 314.45 (21.63) a | 122.62 (7.81) d | 202.44 (6.43) b | 83.94 (11.38) e |
14 | Apigenin 8-C-glucoside | 6.02 (0.12) d | 9.79 (1.01) bc | 6.51 (0.35) cd | 10.59 (1.12) bc | 8.04 (0.29) bcd | 4.94 (0.50) d | 17.82 (0.85) a | 20.47 (2.92) a |
15 | Lanuginosine | 214.52 (10.57) de | 793.17 (9.65) abc | 1000.27 (71.40) a | 154.86 (5.47) e | 591.33 (122.16) bc | 886.32 (200.42) ab | 940.37 (144.81) a | 502.21 (108.37) cd |
16 | Luteolin-3-Galactoside-7-Rhamnoside | 11.29 (1.20) d | 80.48 (0.91) b | 122.52 (11.95) a | 112.64 (5.60) a | 103.26 (9.49) a | 120.58 (12.71) a | 47.49 (5.86) c | 60.98 (5.51) bc |
17 | Luteolin-3-Glucoside-7-Rhamnoside | 3.38 (0.34) a | 10.38 (1.11) b | 14.69 (1.49) c | 32.15 (2.22) de | 36.69 (3.13) de | 52.02 (6.27) e | 10.01 (0.48) b | 23.82 (2.58) d |
18 | Pronuciferine | 121.37 (1.94) c | 368.57 (5.42) a | 294.84 (8.55) b | 88.75 (2.73) d | 129.87 (2.86) c | 80.42 (12.1) d | 42.05 (4.07) e | 44.08 (2.80) e |
DPPH | ABTS | FRAP | |
---|---|---|---|
Atemoya | 13.51 (0.31) cd | 5.01 (0.01) e | 14.79 (0.07) b |
Campas | 20.06 (0.47) a | 6.92 (0.03) d | 13.95 (0.67) bc |
Chaffey | 12.59 (0.75) d | 7.17 (0.05) c | 12.64 (0.42) cd |
Daniela | 10.31 (0.66) e | 4.82 (0.06) e | 12.33 (0.88) d |
Fino de Jete | 14.14 (0.58) c | 6.87 (0.06) d | 14.81 (0.42) b |
Torre1 | 7.71 (0.09) f | 3.01 (0.05) f | 6.98 (0.49) e |
Torre2 | 20.21 (0.65) a | 9.72 (0.16) a | 22.06 (1.39) a |
White | 16.91 (0.13) b | 7.99 (0.12) b | 14.99 (1.3) b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannino, G.; Gentile, C.; Porcu, A.; Agliassa, C.; Caradonna, F.; Bertea, C.M. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules 2020, 25, 2612. https://doi.org/10.3390/molecules25112612
Mannino G, Gentile C, Porcu A, Agliassa C, Caradonna F, Bertea CM. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules. 2020; 25(11):2612. https://doi.org/10.3390/molecules25112612
Chicago/Turabian StyleMannino, Giuseppe, Carla Gentile, Alessandra Porcu, Chiara Agliassa, Fabio Caradonna, and Cinzia Margherita Bertea. 2020. "Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves" Molecules 25, no. 11: 2612. https://doi.org/10.3390/molecules25112612
APA StyleMannino, G., Gentile, C., Porcu, A., Agliassa, C., Caradonna, F., & Bertea, C. M. (2020). Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules, 25(11), 2612. https://doi.org/10.3390/molecules25112612