Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS
Abstract
:1. Introduction
2. Results
2.1. Molecular Network-Based Annotation of Species-Specific Metabolites
2.2. Characterized Alkaloids of P. nudicaule
2.3. Alkaloid-Based Multivariate Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Reagents and Chemicals
3.3. Sample Preparation
3.4. LC and MS Analysis
3.5. LC-MS/MS Data Processing
3.6. Identification of Species-Specific Metabolites Using Molecular Network Processing
3.7. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harborne, J.B. Plant polyphenols—XV: Flavonols as yellow flower pigments. Phytochemistry 1965, 4, 647–657. [Google Scholar] [CrossRef]
- Tatsis, E.C.; Böhm, H.; Schneider, B. Occurrence of nudicaulin structural variants in flowers of papaveraceous species. Phytochemistry 2013, 92, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Cordell, G.A. Fifty years of alkaloid biosynthesis in phytochemistry. Phytochemistry 2013, 91, 29–51. [Google Scholar] [CrossRef]
- Hagel, J.M.; Facchini, P.J. Benzylisoquinoline alkaloid metabolism: A century of discovery and a brave new world. Plant Cell Physiol. 2013, 54, 647–672. [Google Scholar] [CrossRef] [Green Version]
- Farrow, S.C.; Hagel, J.M.; Facchini, P.J. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. Phytochemistry 2012, 77, 79–88. [Google Scholar] [CrossRef]
- Ziegler, J.; Facchini, P.J.; Geissler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtlander, S.; Gesell, A.; Pienkny, S.; Brandt, W. Evolution of morphine biosynthesis in opium poppy. Phytochemistry 2009, 70, 1696–1707. [Google Scholar] [CrossRef]
- Oh, J.-H.; Ha, I.J.; Lee, M.Y.; Kim, E.-O.; Park, D.; Lee, J.-H.; Lee, S.-G.; Kim, D.-W.; Lee, T.-H.; Lee, E.-J.; et al. Identification and metabolites profiling of alkaloids in aerial parts of Papaver rhoeas by liquid chromatography coupled with quadrupole time-of-Flight tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2517–2527. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-H.; Yun, M.; Park, D.; Ha, I.J.; Kim, C.-K.; Kim, D.-W.; Kim, E.-O.; Lee, S.-G. Papaver nudicaule (Iceland poppy) alleviates lipopolysaccharide-Induced inflammation through inactivating NF-κB and STAT3. BMC Complement. Altern. Med. 2019, 19, 90. [Google Scholar]
- Schliemann, W.; Schneider, B.; Wray, V.; Schmidt, J.; Nimtz, M.; Porzel, A.; Bohm, H. Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule. Phytochemistry 2006, 67, 191–201. [Google Scholar] [CrossRef]
- Tatsis, E.C.; Schaumloffel, A.; Warskulat, A.C.; Massiot, G.; Schneider, B.; Bringmann, G. Nudicaulins, yellow flower pigments of Papaver nudicaule: Revised constitution and assignment of absolute configuration. Org. Lett. 2013, 15, 156–159. [Google Scholar] [CrossRef]
- Dudek, B.; Warskulat, A.-C.; Schneider, B. The occurrence of flavonoids and related compounds in flower sections of Papaver nudicaule. Plants 2016, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Istatkova, R.; Philipov, S.; Yadamsurenghiin, G.O.; Samdan, J.; Dangaa, S. Alkaloids from Papaver nudicaule L. Nat. Prod. Res. 2008, 22, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Philipov, S.; Istatkova, R.; Yadamsurenghiin, G.O.; Samdan, J.; Dangaa, S. A new 8,14-dihydropromorphinane alkaloid from Papaver nudicaule L. Nat. Prod. Res. 2007, 21, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.B.; Ernst, M.; Hooft, J.J.J.; Silva, R.R.; Park, J.; Medema, M.H.; Sung, S.H.; Dorrestein, P.C. Comprehensive mass spectrometry-Guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. Plant J. 2019, 98, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier-Jimenez, D.; Chollet-Krugler, M.; Rondeau, D.; Beniddir, M.A.; Ferron, S.; Delhaye, T.; Allard, P.-M.; Wolfender, J.-L.; Sipman, H.J.M.; Lucking, R.; et al. A database of high-Resolution MS/MS spectra for lichen metabolites. Sci. Data 2019, 6, 294. [Google Scholar] [CrossRef] [Green Version]
- Ernst, M.; Kang, K.B.; Caraballo-Rodriquez, A.M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M.H.; Dorrestein, P.C.; et al. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Jeong, E.-K.; Lee, S.Y.; Yu, S.M.; Park, N.H.; Lee, H.-S.; Yim, Y.-H.; Hwang, G.-S.; Cheong, C.; Jung, J.H.; Hong, J. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1661–1674. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-Isotope-Labeled organism. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Liu, L. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int. J. Mol. Sci. 2016, 17, 1414. [Google Scholar] [CrossRef] [Green Version]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.X.; Carver, J.J. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M. TM4: A free, open-Source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the examined materials are available from the authors. |
Peak No. | Rt (min) | Observed Mass (Da) | Calculated Mass (Da) | Formula | Adduct Form | MS/MS Fragment Ions (m/z) | Species | Fold Change * |
---|---|---|---|---|---|---|---|---|
1 | 4.68 | 330.1326 | 330.1342 | C19H24NO4 | [M + H]+ | 263.0700, 194.0804 *, 189.0688, 177.0769 *, 176.0703 * | P. rhoeas | −1.92 |
2 | 5.17 | 272.1274 | 272.1287 | C16H18NO3 | [M + H]+ | 256.1035 *, 238.0969, 162.0625, 108.0529 *, 107.0501 * | P. nudicaule | 0.41 |
3 | 5.73 | 314.1745 | 314.1756 | C19H24NO3 | [M + H]+ | 271.1322, 269.1156, 237.0897, 175.0758, 107.0499 * | P. rhoeas | −1.84 |
4 | 6.07 | 554.1616 | 554.1630 | C38H22N2O3 | [M + H]+ | 352.1170 *, 334.1059, 190.0855 * | P. rhoeas | −1.98 |
5 | 6.16 | 286.1437 | 286.1443 | C17H20NO3 | [M + H]+ | 270.1225 *, 238.0931, 210.0994, 108.0535 *, 107.0498 * | P. nudicaule | 1.10 |
6 | 6.27 | 300.1589 | 300.1600 | C18H22NO3 | [M + H]+ | 270.1193 *, 238.0928, 176.0773, 108.0514 *, 107.0482 * | P. nudicaule | 1.07 |
7 | 6.31 | 358.1643 | 358.1655 | C20H24NO5 | [M + H]+ | 277.0835, 191.0929, 190.0851 *, 151.0750 | P. nudicaule | 2.28 |
8 | 6.48 | 342.1335 | 342.1342 | C19H20NO5 | [M + H]+ | 263.0708, 235.0753, 206.0803, 176.0704 *, 165.0543 | P. rhoeas | −1.92 |
9 | 6.48 | 368.1123 | 368.1134 | C20H18NO6 | [M + H]+ | 350.1043, 332.0949, 261.0567, 188.0705 * | P. rhoeas | −1.67 |
10 | 6.64 | 342.1694 | 342.1705 | C20H24NO4 | [M + H]+ | 297.1128 *, 282.0899, 265.0851 *, 237.0906, 191.0858 | P. rhoeas | −0.77 |
11 | 6.67 | 370.1282 | 370.1291 | C20H20NO6 | [M + H]+ | 352.1191 *, 334.1087, 320.0927, 190.0865 *, 188.0710 * | P. rhoeas | −3.26 |
12 | 6.82 | 372.1424 | 372.1447 | C20H22NO6 | [M + H]+ | 354.1340, 322.1152, 204.1051 *, 192.1013 | P. rhoeas | −0.81 |
13 | 6.91 | 618.1764 | 618.1791 | C39H26N2O6 | [M + H]+ | 370.1305, 352.1171 *, 321.0745, 190.0835 | P. rhoeas | −2.60 |
14 | 6.94 | 535.2476 | 535.2444 | C30H35N2O7 | [M + H]+ | 518.2158, 504.2009 *, 320.1053, 220.0970 *, 205.0732 | P. nudicaule | 3.35 |
15 | 7.11 | 344.1864 | 344.1862 | C20H26NO4 | [M + H]+ | 298.1471, 267.1026, 191.0932, 190.0876 * | P. nudicaule | 0.56 |
16 | 7.12 | 358.1641 | 358.1655 | C20H24NO5 | [M + H]+ | 340.1564, 278.0934, 194.0830, 176.0704 * | P. nudicaule | 0.33 |
17 | 7.27 | 370.1635 | 370.1655 | C21H24NO5 | [M + H]+ | 338.1369, 238.0629, 192.1021 * | P. nudicaule | 2.07 |
18 | 7.38 | 372.1808 | 372.1811 | C21H26NO5 | [M + H]+ | 354.1692, 291.1015, 222.1118, 204.1017 *, 190.0853 | P. nudicaule | 2.20 |
19 | 7.39 | 386.1581 | 386.1604 | C21H24NO6 | [M + H]+ | 306.1193, 206.1168, 191., 190.0865 * | P. rhoeas | −1.67 |
20 | 7.78 | 356.1475 | 356.1498 | C20H22NO5 | [M + H]+ | 340.1547 *, 325.1345, 267.0990, 192.1015 *, 177.0782 | P. rhoeas | −1.26 |
21 | 7.93 | 430.1854 | 430.1866 | C23H28NO7 | [M + H]+ | 412.1746 *, 350.1138, 220.0961 *, 218.0798, 205.0839 | P. nudicaule | 2.25 |
22 | 8.00 | 402.1930 | 402.1917 | C22H28NO6 | [M + H]+ | 384.1809 *, 335.1278, 206.1175 *, 193.0857, 179.0701 | P. nudicaule | 3.25 |
23 | 8.01 | 390.1907 | 390.1917 | C21H28NO6 | [M + H]+ | 372.1808 *, 310.1199, 208.0969 *, 193.0724 | P. nudicaule | 2.85 |
24 | 8.05 | 356.1859 | 356.1862 | C21H26NO4 | [M + H]+ | 206.1178 *, 190.0868, 162.0911 | P. nudicaule | 2.92 |
25 | 8.07 | 340.1547 | 340.1549 | C20H22NO4 | [M + H]+ | 323.1095, 277.0838, 192.1016 *, 177.0790 | P. rhoeas | −1.67 |
26 | 8.30 | 352.1182 | 352.1185 | C20H18NO5 | [M + H]+ | 334.1082, 320.0924, 190.0863 * | P. rhoeas | −3.99 |
27 | 8.97 | 356.1857 | 356.1862 | C21H26NO4 | [M + H]+ | 325.1384, 249.1838, 192.1017 *, 177.0777 | P. nudicaule | 2.78 |
28 | 9.13 | 400.1745 | 400.1760 | C22H26NO6 | [M + H]+ | 382.1670, 341.1352, 282.1280, 204.1006 *, 165.0901 * | P. nudicaule | 2.08 |
29 | 9.19 | 370.1650 | 370.1655 | C21H24NO5 | [M + H]+ | 352.1534, 291.1014, 222.1122, 205.1094 *, 204.1018 * | P. nudicaule | 2.10 |
30 | 9.30 | 414.1901 | 414.1917 | C23H28NO6 | [M + H]+ | 220.0969 *, 205.0740 | P. nudicaule | 3.84 |
31 | 9.38 | 388.1750 | 388.1760 | C21H26NO6 | [M + H]+ | 370.1647 *, 352.1541 *, 336.1232, 322.1189, 308.1273 | P. nudicaule | 2.59 |
32 | 9.47 | 354.1338 | 354.1342 | C20H20NO5 | [M + H]+ | 275.0710, 247.0758, 206.0812, 189.0779 *, 188.0708 * | P. nudicaule | 0.82 |
33 | 9.47 | 403.1974 | 403.1995 | C22H29NO6 | [M + H]+ | 385.1845, 354.1717, 280.1043, 207.1207 *, 206.1171 * | P. nudicaule | 3.67 |
34 | 9.48 | 384.1797 | 384.1811 | C22H26NO5 | [M + H]+ | 352.1535, 325.1429, 206.1183 *, 190.0870 | P. nudicaule | 3.83 |
35 | 9.48 | 402.1935 | 402.1917 | C22H28NO6 | [M + H]+ | 384.1807 *, 353.1394, 325.1411, 206.1183 *, 190.0869 | P. nudicaule | 3.73 |
36 | 9.49 | 424.1749 | 424.1760 | C24H26NO6 | [M + H]+ | 384.1911, 214.0871, 206.1176 * | P. nudicaule | 2.78 |
37 | 9.59 | 400.1747 | 400.1760 | C22H26NO6 | [M + H]+ | 382.1643, 206.0815 *, 191.0586 | P. nudicaule | 3.57 |
38 | 9.60 | 422.1580 | 422.1604 | C24H24NO6 | [M + H]+ | 351.1177, 206.0833 *, 191.0590 * | P. nudicaule | 2.14 |
39 | 10.05 | 386.1980 | 386.1968 | C22H28NO5 | [M + H]+ | 368.1870, 306.1264 *, 222.1139, 204.1025 *, 190.0872 | P. nudicaule | 3.65 |
40 | 10.10 | 416.1691 | 416.1709 | C22H26NO7 | [M + H]+ | 398.1606, 222.0767 *, 205.0733 | P. nudicaule | 2.41 |
41 | 10.48 | 370.1643 | 370.1655 | C21H24NO5 | [M + H]+ | 290.0944 *, 206.0813, 188.0709 *, 181.0861 | P. nudicaule | 2.72 |
42 | 10.52 | 338.1385 | 338.1392 | C20H20NO4 | [M + H]+ | 277.0861, 249.0912, 190.0859 *, 149.0596 | P. rhoeas | −1.67 |
43 | 10.80 | 384.1433 | 384.1447 | C21H22NO6 | [M + H]+ | 352.1182 *, 334.1080, 320.0922, 190.0858 *, 188.0707 * | P. rhoeas | −4.37 |
44 | 11.04 | 370.2009 | 370.2018 | C22H28NO4 | [M + H]+ | 206.1178 *, 190.0868 | P. nudicaule | 4.08 |
45 | 11.16 | 324.1227 | 324.1236 | C19H18NO4 | [M + H]+ | 250.0942, 176.0707 *, 149.0596 * | P. rhoeas | −3.29 |
46 | 11.28 | 635.2425 | 635.2393 | C37H35N2O8 | [M + H]+ | 499.2079, 398.1601 *, 380.1486, 220.0967 * | P. nudicaule | 2.05 |
47 | 11.70 | 500.1908 | 500.1921 | C26H30NO9 | [M + H]+ | 456.2026, 397.1888, 220.0972 *, 205.0742 | P. nudicaule | 0.97 |
48 | 11.71 | 398.1595 | 398.1604 | C22H24NO6 | [M + H]+ | 382.1282 *, 364.1176, 336.1231 *, 193.0859 | P. nudicaule | 3.51 |
49 | 11.78 | 386.1957 | 386.1968 | C22H28NO5 | [M + H]+ | 222.1129 *, 161.0831 | P. nudicaule | 3.33 |
50 | 12.15 | 354.1695 | 354.1705 | C21H24NO4 | [M + H]+ | 338.1361, 190.0864 *, 149.0593 | P. nudicaule | 3.11 |
51 | 15.51 | 402.1907 | 402.1917 | C22H28NO6 | [M + H]+ | 384.1812 *, 322.1200, 220.0975 *, 205.0734 | P. nudicaule | 3.85 |
52 | 15.75 | 400.1748 | 400.1760 | C22H26NO6 | [M + H]+ | 382.1649, 320.1051, 220.0965 *, 205.0736 | P. nudicaule | 3.47 |
53 | 16.00 | 663.2720 | 663.2706 | C39H39N2O8 | [M + H]+ | 499.2075, 398.1603 *, 380.1482, 220.0972 * | P. nudicaule | 2.55 |
54 | 16.01 | 384.1793 | 384.1811 | C22H26NO5 | [M + H]+ | 322.1197, 220.0970 *, 205.0729 | P. nudicaule | 2.77 |
55 | 16.15 | 444.2040 | 444.2022 | C24H30NO7 | [M + H]+ | 384.1814 *, 322.1204, 220.0974 *, 205.0730 | P. nudicaule | 3.51 |
56 | 16.18 | 430.1852 | 430.1866 | C23H28NO7 | [M + H]+ | 370.1661 *, 322.1185, 206.0810 *, 191.0576 | P. nudicaule | 2.35 |
57 | 16.30 | 499.2038 | 499.2022 | C33H27N2O3 | [M + H]+ | 351.1147, 320.1046, 220.0969 *, 205.0733 | P. nudicaule | 2.94 |
58 | 16.36 | 430.2216 | 430.2230 | C24H32NO6 | [M + H]+ | 384.1808 *, 353.1377, 206.1173 *, 192.1008 | P. nudicaule | 2.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Oh, J.-H.; Lee, M.Y.; Lee, S.-G.; Ha, I.J. Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS. Molecules 2020, 25, 2636. https://doi.org/10.3390/molecules25112636
Song K, Oh J-H, Lee MY, Lee S-G, Ha IJ. Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS. Molecules. 2020; 25(11):2636. https://doi.org/10.3390/molecules25112636
Chicago/Turabian StyleSong, Kwangho, Jae-Hyeon Oh, Min Young Lee, Seok-Geun Lee, and In Jin Ha. 2020. "Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS" Molecules 25, no. 11: 2636. https://doi.org/10.3390/molecules25112636
APA StyleSong, K., Oh, J. -H., Lee, M. Y., Lee, S. -G., & Ha, I. J. (2020). Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS. Molecules, 25(11), 2636. https://doi.org/10.3390/molecules25112636