Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. X-Ray Studies
2.3. Biological Studies
2.3.1. Anti-Cancer Activity
2.3.2. Lactate Dehydrogenase Assay
2.3.3. Apoptotic Activity
2.3.4. Interleukin-6 Assay
3. Conclusions
4. Materials and Methods
4.1. Apparatus, Materials, and Analysis
4.2. Derivatives of 3-Substitued-1,1-bis(2-(3-substituted-thioureido)ethyl)thioureas
General Procedure
4.3. Biological Assays
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raposo, C.; Almaraz, M.; Martín, M.; Weinrich, V.; Mussóns, M.L.; Alcázar, V.; Caballero, M.C.; Morán, R.J. Tris(2-Aminoethyl)Amine, a Suitable Spacer for Phosphate and Sulfate Receptors. Chem. Lett. 1995, 24, 759–760. [Google Scholar] [CrossRef]
- Busschaert, N.; Gale, P.A.; Haynes, C.J.E.; Light, M.E.; Moore, S.J.; Tong, C.C.; Davis, J.T.; William, A.; Harrell, J. Tripodal Transmembrane Transporters for Bicarbonate. Chem. Commun. 2010, 46, 6252–6254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantho, A.; Price, M.; Ashraf, A.; Wajid, U.; Khansari, M.; Jahan, A.; Afroze, S.; Rhaman, M.; Johnson, C.; Kuehl, T.; et al. Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells. Int. J. Environ. Res. Public Health 2017, 14, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound (accessed on 7 June 2020).
- Stefanska, J.; Szulczyk, D.; Koziol, A.E.; Miroslaw, B.; Kedzierska, E.; Fidecka, S.; Busonera, B.; Sanna, G.; Giliberti, G.; La Colla, P.; et al. Disubstituted Thiourea Derivatives and Their Activity on CNS: Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2012, 55, 205–213. [Google Scholar] [CrossRef]
- Stefanska, J.; Nowicka, G.; Struga, M.; Szulczyk, D.; Koziol, A.E.; Augustynowicz-Kopec, E.; Napiorkowska, A.; Bielenica, A.; Filipowski, W.; Filipowska, A.; et al. Antimicrobial and Anti-Biofilm Activity of Thiourea Derivatives Incorporating a 2-Aminothiazole Scaffold. Chem. Pharm. Bull. 2015, 63, 225–236. [Google Scholar]
- Bielenica, A.; Stefańska, J.; Stępień, K.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Sanna, G.; Madeddu, S.; Boi, S.; Giliberti, G.; Wrzosek, M.; et al. Synthesis, Cytotoxicity and Antimicrobial Activity of Thiourea Derivatives Incorporating 3-(Trifluoromethyl)Phenyl Moiety. Eur. J. Med. Chem. 2015, 101, 111–125. [Google Scholar] [CrossRef]
- Bielenica, A.; Kedzierska, E.; Fidecka, S.; Maluszynska, H.; Miroslaw, B.; Koziol, A.E.; Stefanska, J.; Madeddu, S.; Giliberti, G.; Struga, M. Synthesis, Antimicrobial and Pharmacological Evaluation of Thiourea derivatives of 4H-1,2,4-triazole. Lett. Drug. Des. Discov. 2015, 12, 263–276. [Google Scholar] [CrossRef]
- Stefanska, J.; Stepien, K.; Bielenica, A.; Szulczyk, D.; Miroslaw, B.; Koziol, A.E.; Sanna, G.; Iuliano, F.; Madeddu, S.; Struga, M. Antimicrobial and Anti-biofilm Activity of Thiourea Derivatives Bearing 3-amino-1H-1,2,4-triazole Scaffold. Med. Chem. 2016, 12, 478–488. [Google Scholar] [CrossRef]
- Drzewiecka-Antonik, A.; Rejmak, P.; Klepka, M.T.; Wolska, A.; Pietrzyk, P.; Stepien, K.; Sanna, G.; Struga, M. Synthesis, Structural Studies and Biological Activity of Novel Cu(II) Complexes with Thiourea Derivatives of 4-Azatricyclo[5.2.1.02,6]Dec-8-Ene-3,5-Dione. J. Inorg. Biochem. 2017, 176, 8–16. [Google Scholar] [CrossRef]
- Szulczyk, D.; Struga, M. 4-Hydroxy-1-Methyl-7-(Propan-2-Yl)-4-Azatricyclo [5.2.2.02,6]Undec-8-Ene-3,5-Dione. Molbank 2012, 2012, M767. [Google Scholar] [CrossRef] [Green Version]
- Sanna, G.; Madeddu, S.; Giliberti, G.; Piras, S.; Struga, M.; Wrzosek, M.; Kubiak-Tomaszewska, G.; Koziol, A.E.; Savchenko, O.; Lis, T.; et al. Synthesis and Biological Evaluation of Novel Indole-Derived Thioureas. Molecules 2018, 23, 2554. [Google Scholar] [CrossRef] [Green Version]
- Szulczyk, D.; Bielenica, A.; Kędzierska, E.; Leśniak, A.; Pawłowska, A.; Bujalska-Zadrożny, M.; Saccone, I.; Sparaco, R.; Fiorino, F.; Savchenko, O.; et al. Protein-Coupled Receptor Binding and Pharmacological Evaluation of Indole-Derived Thiourea Compounds. Arch. Pharm. 2020, 353, 1900218. [Google Scholar] [CrossRef]
- Bielenica, A.; Szulczyk, D.; Olejarz, W.; Madeddu, S.; Giliberti, G.; Materek, I.B.; Koziol, A.E.; Struga, M. 1H-Tetrazol-5-Amine and 1,3-Thiazolidin-4-One Derivatives Containing 3-(Trifluoromethyl)Phenyl Scaffold: Synthesis, Cytotoxic and Anti-HIV Studies. Biomed. Pharmacother. 2017, 94, 804–812. [Google Scholar] [CrossRef]
- Szulczyk, D.; Tomaszewski, P.; Jóźwiak, M.; Kozioł, A.E.; Lis, T.; Collu, D.; Iuliano, F.; Struga, M. Synthesis and Biological Activities of Ethyl 2-(2-Pyridylacetate) Derivatives Containing Thiourea, 1,2,4-Triazole, Thiadiazole and Oxadiazole Moieties. Molecules 2017, 22, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulczyk, D.; Dobrowolski, M.A.; Roszkowski, P.; Bielenica, A.; Stefańska, J.; Koliński, M.; Kmiecik, S.; Jóźwiak, M.; Wrzosek, M.; Olejarz, W.; et al. Design and Synthesis of Novel 1H-Tetrazol-5-Amine Based Potent Antimicrobial Agents: DNA Topoisomerase IV and Gyrase Affinity Evaluation Supported by Molecular Docking Studies. Eur. J. Med. Chem. 2018, 156, 631–640. [Google Scholar] [CrossRef]
- Szulczyk, D.; Bielenica, A.; Głogowska, A.; Augustynowicz-Kopeć, E.; Dobrowolski, M.; Roszkowski, P.; Stępień, K.; Chrzanowska, A.; Struga, M. Development of (4-Methoxyphenyl)-1H-Tetrazol-5-Amine Regioisomers as a New Class of Selective Antitubercular Agents. Eur. J. Med. Chem. 2020, 186, 111882. [Google Scholar] [CrossRef]
- Schroeder, D.C. Thioureas. Chem. Rev. 1955, 55, 181–228. [Google Scholar] [CrossRef]
- Shakeel, A.; Altaf, A.A.; Qureshi, A.M.; Badshah, A. Thiourea Derivatives in Drug Design and Medicinal Chemistry: A Short Review. J. Drug. Des. Med. Chem. 2016, 2, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, I.L.; de Azambuja, G.O.; Kawano, D.F.; Eifler-Lima, V.L. Thioureas as Building Blocks for the Generation of Heterocycles and Compounds with Pharmacological Activity: An Overview. Mini-Rev. Org. Chem. 2018, 15, 28–35. [Google Scholar] [CrossRef]
- Bogatskii, A.V.; Luk’yanenko, N.G.; Kirichenko, T.I. Cyclic Thioureas (Review). Chem. Heterocycl. Compd. 1983, 19, 577–589. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In Genotoxicity—A Predictable Risk to Our Actual World; IntechOpen: London, UK, 2017; pp. 1–18. [Google Scholar]
- Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull. 1992, 40, 127–130. [Google Scholar]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and Drugability. Adv. Drug. Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug. Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APEX2 (Version 2009.1); Bruker AXS Inc.: Madison, WI, USA, 2013.
- SAINT (Version 4.050); Bruker AXS Inc.: Madison, WI, USA, 2013.
- SADABS (Version 2004/1); Bruker AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Wilson, A.J.C.; Geist, V. International Tables for Crystallography; BKluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Volume C, p. 883. [Google Scholar]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Stępień, K.; Struga, M. Anticancer and Antimicrobial Effects of Novel Ciprofloxacin Fatty Acids Conjugates. Eur. J. Med. Chem. 2020, 185, 111810. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | MW [g/mol] | Log Po/w * | Drug Likeness ** |
---|---|---|---|
1 | 598.80 | 2.17 | Yes; 1 violation: MW > 500 |
2 | 508.73 | 3.13 | Yes; 1 violation: MW > 500 |
3 | 612.06 | 4.54 | No; 2 violations: MW > 500, MLOGP > 4.15 |
4 | 745.41 | 4.83 | No; 2 violations: MW > 500, MLOGP > 4.15 |
5 | 666.03 | 5.64 | No; 2 violations: MW > 500, MLOGP > 4.15 |
6 | 592.88 | 3.51 | Yes; 1 violation: MW > 500 |
7 | 598.66 | 3.47 | No; 2 violations: MW > 500, NorO > 10 |
Compound | (1) | (7) |
---|---|---|
Empirical formula | C28H34N6O3S3 | C28H32N12O3S1 |
Formula weight | 598.79 | 616.72 |
Temperature [K] | 100 | 130 |
Space group | P-1 | P-1 |
Unit cell dimensions | ||
a [Å] | 8.9243(5) | 8.6567(8) |
b [Å] | 10.5616(5) | 10.0605(8) |
c [Å] | 15.9877(8) | 17.3294(13) |
α [°] | 83.818(2) | 93.374(4) |
β [°] | 74.557(2) | 95.721(5) |
γ [°] | 82.385(2) | 106.197(4) |
Volume V [Å3] | 1435.56(13) | 1436.2(2) |
Z [molecules/cell] | 2 | 2 |
Dcalculated [g cm−3] | 1.385 | 1.426 |
Absorption coefficientμ/mm−1 | 0.300 | 0.168 |
θ range for data collection [°] | 3.008-24.999 | 2.117-24.999 |
Limiting indices | −10 < = h = > 10 | −10 < = h = > 10 |
−12 < = k = > 12 | −11 < = k = > 11 | |
−19 < = l = > 19 | −20 < = l = > 20 | |
Reflections collected/unique | 41,435/5062 | 39,822/5009 |
Data/parameters | 5062/384 | 5009/412 |
Goodness of Fit | 1.054 | 1.096 |
Final R index (I > 2σ) | 0.0266 | 0.0560 |
wR2 | 0.0644 | 0.1310 |
Largest diff. Peak and hole [Å−3] | 0.23 and −0.25 | 0.53 and −0.3 |
Compound | Cancer Cells | Normal Cells | |||||
---|---|---|---|---|---|---|---|
CaCo-2 c | A549 d | HTB-140 e | HaCaT f | ||||
IC50 a | SI b | IC50 | SI | IC50 | SI | IC50 | |
1 | >100 | - | >100 | - | >100 | - | >100 |
2 | >100 | - | >100 | - | >100 | - | >100 |
3 | 27.70 ± 3.7 | 1.08 | 25.00 ± 2.4 | 1.19 | 22.63 ± 2.0 | 1.32 | 29.90 ± 1.8 |
4 | 17.15 ±1.9 | 1.12 | 16.79 ± 1.9 | 1.15 | 14.74 ± 1.5 | 1.35 | 19.30 ± 3.5 |
5 | 17.87 ± 2.8 | 1.05 | 15.43 ± 2.1 | 1.21 | 14.77 ± 3.2 | 1.27 | 18.75 ± 4.3 |
6 | 15.74 ± 1.7 | 1.02 | 14.98 ± 1.7 | 1.08 | 13.95 ± 2.5 | 1.16 | 16.15 ± 5.7 |
7 | >100 | - | >100 | - | >100 | - | >100 |
Cisplatin | 1.68 ± 0.94 | 1.69 | 1.95 ± 0.83 | 1.46 | 1.13 ± 0.19 | 2.51 | 2.84 ± 1.06 |
Doxorubicin | 0.53 ± 0.23 | 2.06 | 0.63 ± 0.21 | 1.73 | 0.47 ± 0.18 | 2.32 | 1.09 ± 0.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulczyk, D.; Bielenica, A.; Roszkowski, P.; Dobrowolski, M.A.; Olejarz, W.; Napiórkowska, M.; Struga, M. Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives. Molecules 2020, 25, 2816. https://doi.org/10.3390/molecules25122816
Szulczyk D, Bielenica A, Roszkowski P, Dobrowolski MA, Olejarz W, Napiórkowska M, Struga M. Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives. Molecules. 2020; 25(12):2816. https://doi.org/10.3390/molecules25122816
Chicago/Turabian StyleSzulczyk, Daniel, Anna Bielenica, Piotr Roszkowski, Michał A. Dobrowolski, Wioletta Olejarz, Mariola Napiórkowska, and Marta Struga. 2020. "Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives" Molecules 25, no. 12: 2816. https://doi.org/10.3390/molecules25122816
APA StyleSzulczyk, D., Bielenica, A., Roszkowski, P., Dobrowolski, M. A., Olejarz, W., Napiórkowska, M., & Struga, M. (2020). Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives. Molecules, 25(12), 2816. https://doi.org/10.3390/molecules25122816