Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Fe(II)–NHC Complexes
2.2. Antimicrobial Activity
2.3. Preliminary Mechanistic Studies
- To evaluate the metal oxidation state, UV–Vis spectra were recorded between each addition of H2O2 to a solution of complex 3d (Figure 2A), and significant spectral changes were observed, which was attributed to iron(II) oxidation. Electron paramagnetic resonance (EPR) corroborated this evidence, since 3d showed no signal, a typical behavior of a Fe(II) spin-down complex (Figure 2B), after which the addition of H2O2 caused the appearance of the typical signal of a Fe(III) complex (Figure 2C).
- To detect the presence of hydroxyl radicals, a ROS indicator, p-aminophenyl fluorescein, was used. This probe is non-fluorescent until it reacts with the hydroxyl radical; the ROS formation could therefore be observed through the progressive detection of fluorescence upon addition of H2O2, confirming the formation of hydroxyl radicals (Figure 2D).
3. Materials and Methods
3.1. Preparation of Imidazolium Pro-Ligands
3.2. General Procedure for the Preparation of Iron(II)–NHC Complexes 3a and 3b
3.3. Antimicrobial Activity
3.4. Iron Oxidation Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Patra, M.; Gasser, G.; Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans. 2012, 41, 6350–6358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Liu, L.-j.; Wang, W.; Li, S.; Shi, M. Chiral NHC–metal-based asymmetric catalysis. Coord. Chem. Rev. 2012, 256, 804–853. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef] [Green Version]
- Hindi, K.M.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. The Medicinal Applications of Imidazolium Carbene Metal Complexes. Chem. Rev. 2009, 109, 3859–3884. [Google Scholar] [CrossRef] [Green Version]
- Oehninger, L.; Rubbiani, R.; Ott, I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans. 2013, 42, 3269–3284. [Google Scholar] [CrossRef]
- Cingolani, A.; Zanotti, V.; Zacchini, S.; Massi, M.; Simpson, P.V.; Maheshkumar Desai, N.; Casari, I.; Falasca, M.; Rigamonti, L.; Mazzoni, R. Synthesis, reactivity and preliminary biological activity of iron(0) complexes with cyclopentadienone and amino-appended N-heterocyclic carbene ligands. Appl. Organometal. Chem. 2019, 33, e4779.10. [Google Scholar] [CrossRef]
- Melaiye, A.; Simons, R.S.; Milsted, A.; Pingitore, F.; Wesdemiotis, C.; Tessier, C.A.; Youngs, W.J. Formation of Water-Soluble Pincer Silver(I)−Carbene Complexes: A Novel Antimicrobial Agent. J. Med. Chem. 2004, 47, 973–977. [Google Scholar] [CrossRef]
- Roland, S.; Jolivalt, C.; Cresteil, T.; Eloy, L.; Bouhours, P.; Hequet, A.; Mansuy, V.; Vanucci, C.; Paris, J.M. Investigation of a Series of Silver–N-Heterocyclic Carbenes as Antibacterial Agents: Activity, Synergistic Effects, and Cytotoxicity. Chem. Eur. J. 2011, 17, 1442–1446. [Google Scholar] [CrossRef]
- Haque, R.A.; Salman, A.W.; Budagumpi, S.; Abdullah, A.A.-A.; Majid, A.M.S.A. Sterically tuned Ag(i)- and Pd(ii)-N-heterocyclic carbene complexes of imidazol-2-ylidenes: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Metallomics 2013, 5, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Owings, J.P.; McNair, N.N.; Mui, Y.F.; Gustafsson, T.N.; Holmgren, A.; Contel, M.; Goldberg, J.B.; Mead, J.R. Auranofin and N-heterocyclic Carbene Gold-Analogs are Potent Inhibitors of the Bacteria Helicobacter pylori. FEMS Microbiol. Lett. 2016, 14, 363–369. [Google Scholar]
- Cetinkaya, B.; Cetinkaya, E.; Kucukbay, H.; Durmaz, R. Antimicrobial activity of carbene complexes of Rhodium(I) and Ruthenium(II). Arzneim. Forsch. 1996, 46, 821–823. [Google Scholar]
- Efthimiadou, E.K.; Karaliota, A.; Psomas, G. Mononuclear metal complexes of the second-generation quinolone antibacterial agent enrofloxacin: Synthesis, structure, antibacterial activity and interaction with DNA. Polyhedron 2008, 27, 1729–1738. [Google Scholar] [CrossRef]
- Long, B.; He, C.; Yang, Y.; Xiang, J. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems. Eur. J. Med. Chem. 2010, 45, 1181–1188. [Google Scholar] [CrossRef]
- Elseman, A.M.; Shalan, A.E.; Rashad, M.M.; Hassan, A.M.; Ibrahim, N.M.; Nassar, A.M. Easily attainable new approach to mass yield ferrocenyl Schiff base and different metal complexes of ferrocenyl Schiff base through convenient ultrasonication-solvothermal method. J. Phys. Org. Chem. 2017, 30, e3639. [Google Scholar] [CrossRef]
- Da Costa, A.P.; Viciano, M.; Sanaú, M.; Merino, S.; Tejeda, J.; Peris, E.; Royo, B. First Cp*-Functionalized N-Heterocyclic Carbene and Its Coordination to Iridium. Study of the Catalytic Properties. Organometallics 2008, 27, 1305–1309. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Kanwal, S.; Hussain, G. Synthesis characterization and antibacterial activity of Cr (III), Co (III), Fe (II), Cu (II), Ni (III) complexes of 4-(2-(((2-hydroxy-5-nitrophenyl) diazenyl) (phenyl) methylene) hydrazinyl) benzene sulfonic acid based formazan dyes and their applications on leather. Dyes Pigm. 2018, 148, 31–43. [Google Scholar]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Cardoso, J.M.S.; Royo, B. Unprecedented synthesis of iron-NHC complexes by C-H activation of imidazolium salts. Mild catalysts for reduction of sulfoxides. Chem. Commun. 2012, 48, 4944–4946. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of Minimum Inhibitory Concentration. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Kaloğlu, M.; Kaloğlu, N.; Özdemir, İ.; Günal, S.; Özdemir, İ. Novel benzimidazol-2-ylidene carbene precursors and their silver(I) complexes: Potential antimicrobial agents. Bioorg. Med. Chem. 2016, 24, 3649–3656. [Google Scholar] [CrossRef]
- Karataş, M.O.; Olgundeniz, B.; Günal, S.; Özdemir, İ.; Alıcı, B.; Çetinkaya, E. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg. Med. Chem. 2016, 24, 643–650. [Google Scholar] [CrossRef]
- Postigo, L.; Lopes, R.; Royo, B. Dehydrogenative coupling of aromatic thiols with Et3SiH catalysed by N-heterocyclic carbene nickel complexes. Dalton Trans. 2014, 43, 853–858. [Google Scholar] [CrossRef]
- Cardoso, J.M.S.; Lopes, R.; Royo, B. Dehydrogenative silylation of alcohols catalysed by half-sandwich iron N-heterocyclic carbene complexes. J. Organomet. Chem. 2015, 775 (Suppl. C), 173–177. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Regiel-Futyra, A.; Dąbrowski, J.M.; Mazuryk, O.; Śpiewak, K.; Kyzioł, A.; Pucelik, B.; Brindell, M.; Stochel, G. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 2017, 351, 76–117. [Google Scholar] [CrossRef]
- Lopes, R. Catalysis with Bio-Relevant Metals: Iron and nickel Organometallic Complexes in Reduction Reactions. Ph.D. Thesis, Universidade Nova de Lisboa, Lisabon, Portugal, 2018. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Entry | Compounds | R | MIC (µg/mL) | |
---|---|---|---|---|
SA | EC | |||
1 | 3a | 8 | 62.5 | |
2 | 3b | 8 | 125 | |
3 | 3c | 20 | 500 | |
4 | 3d | 8 | 8 | |
5 | 3e | >32 | n.d. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinagreiro, C.S.; Lopes, R.; Royo, B.; Da Silva, G.J.; Pereira, M.M. Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics. Molecules 2020, 25, 2917. https://doi.org/10.3390/molecules25122917
Vinagreiro CS, Lopes R, Royo B, Da Silva GJ, Pereira MM. Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics. Molecules. 2020; 25(12):2917. https://doi.org/10.3390/molecules25122917
Chicago/Turabian StyleVinagreiro, Carolina S., Rita Lopes, Beatriz Royo, Gabriela Jorge Da Silva, and Mariette M. Pereira. 2020. "Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics" Molecules 25, no. 12: 2917. https://doi.org/10.3390/molecules25122917
APA StyleVinagreiro, C. S., Lopes, R., Royo, B., Da Silva, G. J., & Pereira, M. M. (2020). Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics. Molecules, 25(12), 2917. https://doi.org/10.3390/molecules25122917