Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Results
2.1. Aggregation Structure
2.2. Emulsification Process
2.3. Emulsification Mechanism
3. Materials and Methods
3.1. Simulation and Force Field
3.2. Molecular Model
3.2.1. Heavy Oil Model
3.2.2. Heavy Oil Droplets and Micelle Model
3.2.3. Emulsified Oil Droplet Model
3.3. Molecular Dynamics Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mansoori, G.A. A unified perspective on the phase behaviour of petroleum fluids. Int. J. Oil Gas Coal Technol. 2015, 2, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Priyanto, S.; Mansoori, G.A.; Suwono, A. Measurement of Property Relationships of Nano-Structure Micelles and Coacervates of Asphaltene in a Pure Solvent. Chem. Eng. Sci. 2001, 56, 6933–6939. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, G.A. Modelling of Asphaltene and Other Heavy Organic Depositions. J. Pet. Sci. Eng. 1997, 17, 101–111. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Tayebi, L.; Dezfouli, H. Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks. Pet. Sci. 2018, 15, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.A.; Saaid, I.B.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. [Google Scholar] [CrossRef]
- Branco, V.A.M.; Mansoori, G.A.; Xavier, L.C.D.A.; Sang, J.P.; Manafi, H. Asphaltene flocculation and collapse from petroleum fluids. J. Pet. Sci. Eng. 2001, 32, 217–230. [Google Scholar] [CrossRef]
- Umutbaev, V.N.; Efimova, A.K.; Fryazinov, V.V.; Sapozhnikova, E.A.; Savkova, V.G. Protection of equipment from corrosion. Chem. Technol. Fuels Oils 1981, 17, 330–337. [Google Scholar] [CrossRef]
- Taylor, S.E. Use of surface tension measurements to evaluate aggregation of asphaltenes in organic solvents. Fuel 1992, 71, 1338–1339. [Google Scholar] [CrossRef]
- Spiecker, P.M.; Kilpatrick, P.K. Interfacial Rheology of Petroleum Asphaltenes at the Oil? Water Interface. Langmuir 2004, 20, 4022–4032. [Google Scholar] [CrossRef] [PubMed]
- Takamura, K.; Chow, R.S. The electric properties of the bitumen/water interface Part II. Application of the ionizable surface-group model. Colloids Surf. 1985, 15, 35–48. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Z.; Liu, G.; Yuan, S. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface. Energy Fuels 2014, 28, 7368–7376. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Zendehboudi, S.; James, L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel 2019, 252, 753–791. [Google Scholar] [CrossRef]
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A. Critical review of asphaltene properties and factors impacting its stability in crude oil. J. Pet. Explor. Prod. Technol. 2020, 10, 1183–1200. [Google Scholar] [CrossRef] [Green Version]
- Yarranton, H.W.; Alboudwarej, H.; Jakher, R. Investigation of Asphaltene Association with Vapor Pressure Osmometry and Interfacial Tension Measurements. Ind. Eng. Chem. Res. 2000, 39, 2916–2924. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, L.; Xie, L.; Lu, X.; Liu, Q.; He, J.; Mantilla, C.A.; van den Berg, F.G.A.; Zeng, H. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes. Langmuir 2017, 33, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.S.; Ramos, A.C.S.; Loh, W. Aggregation Behavior of Two Asphaltenic Fractions in Aromatic Solvents. Energy Fuels 1999, 13, 323–327. [Google Scholar] [CrossRef]
- Gawrys, K.L.; Blankenship, G.A.; Kilpatrick, P.K. Solvent Entrainment in and Flocculation of Asphaltenic Aggregates Probed by Small-Angle Neutron Scattering. Langmuir 2006, 22, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.R.; Briggs, D.E. The effects of suspended residual solids on the rheology of coal-derived liquids. Colloids Surf. 1982, 4, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Cortes, F.B.; Lozano, M.; Santamaria, O.; Marquez, S.B.; Zapata, K.; Ospina, N.; Franco, C.A. Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. Molecules 2018, 23, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.X.; Guo, Y.M.; Boek, E.S.; Guo, X.Q. Experimental Study on Kinetics of Asphaltene Aggregation in a Microcapillary. Energy Fuels 2017, 31, 9006–9015. [Google Scholar] [CrossRef]
- Moran, K.; Czarnecki, J. Competitive adsorption of sodium naphthenates and naturally occurring species at water-in-crude oil emulsion droplet surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 87–98. [Google Scholar] [CrossRef]
- Moran, K.; Yeung, A.; Masliyah, J. Measuring Interfacial Tensions of Micrometer-Sized Droplets: A Novel Micromechanical Technique. Langmuir 1999, 15, 8497–8504. [Google Scholar] [CrossRef]
- Yeung, A.; Dabros, T.; Masliyah, J.; Czarnecki, J. Micropipette: A new technique in emulsion research. Colloids Surf. A Physicochem. Eng. Asp. 2000, 174, 169–181. [Google Scholar] [CrossRef]
- Yeung, A.; Dabros, T.; Masliyah, J. Does Equilibrium Interfacial Tension Depend on Method of Measurement? J. Colloid Interface Sci. 1998, 208, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Xu, Z.; Masliyah, J. Biodegradable Polymer for Demulsification of Water-in-Bitumen Emulsions. Energy Fuels 2009, 23, 451–456. [Google Scholar] [CrossRef]
- Feng, X.; Mussone, P.; Gao, S.; Wang, S.; Wu, S.Y.; Masliyah, J.H.; Xu, Z. Mechanistic Study on Demulsification of Water-in-Diluted Bitumen Emulsions by Ethylcellulose. Langmuir 2010, 26, 3050–3057. [Google Scholar] [CrossRef]
- Jian, C.; Liu, Q.; Zeng, H.; Tang, T. A Molecular Dynamics Study of the Effect of Asphaltenes on Toluene/Water Interfacial Tension: Surfactant or Solute? Energy Fuels 2018, 32, 3225–3231. [Google Scholar] [CrossRef]
- De Lara, L.S.; Michelon, M.F.; Miranda, C.R. Molecular Dynamics Studies of Fluid/Oil Interfaces for Improved Oil Recovery Processes. J. Phys. Chem. B 2012, 116, 14667–14676. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, H.; Lin, L.; Song, C.; Chen, Q.; Li, Z. Molecular dynamics study of the effect of inorganic salts on the monolayer of four surfactants at the oil/water interface. J. Dispers. Sci. Technol. 2018, 1–9. [Google Scholar] [CrossRef]
- Tang, X.; Xiao, S.; Lei, Q.; Yuan, L.; Peng, B.; He, L.; Luo, J.; Pei, Y. Molecular Dynamics Simulation of Surfactant Flooding Driven Oil-Detachment in Nano-Silica Channels. J. Phys. Chem. B 2019, 123, 277–288. [Google Scholar] [CrossRef]
- Kuznicki, T.; Masliyah, J.H.; Bhattacharjee, S. Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy Fuels 2008, 22, 2379–2389. [Google Scholar] [CrossRef]
- Su, G.; Zhang, H.; Tao, G.; Yuan, S. Effect of SDS in Reducing Viscosity of Heavy Oil: A Molecular Dynamic Study. Energy Fuels 2019, 33, 4921–4930. [Google Scholar] [CrossRef]
- Yuan, J.; Zhong, L.X.; Vakili, M.; Segun, G.A. New modeling method to simulate asphaltenes at oil sands process in water management. J. Mol. Graph. 2019, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shelley, J.C.; Sprik, M.; Klein, M.L. Molecular dynamics simulation of an aqueous sodium octanoate micelle using polarizable surfactant molecules. Langmuir 1993, 9, 916–926. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, G.; Zhang, H.; Wang, Z.; Wang, N.; Sun, X.; Zhang, C.; Li, M. Understanding the properties of methanesulfinic acid at the air-water interface. Sci. Total Environ. 2019, 668, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Reif, M.M.; Winger, M.; Oostenbrink, C. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins. J. Chem. Theory Comput. 2013, 9, 1247–1264. [Google Scholar] [CrossRef]
- Koziara, K.B.; Stroet, M.; Malde, A.K.; Mark, A.E. Testing and validation of the Automated Topology Builder (ATB) version 2.0: Prediction of hydration free enthalpies. J. Comput. Mol. Des. 2014, 28, 221–233. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Takanohashi, T.; Sato, S.; Tanaka, R. Structural Relaxation Behaviors of Three Different Asphaltenes Using MD Calculations. Pet. Sci. Technol. 2004, 22, 901–914. [Google Scholar] [CrossRef]
- Castellano, O.; Gimon, R.; Canelon, C.; Aray, Y.; Soscun, H. Molecular Interactions between Orinoco Belt Resins. Energy Fuels 2012, 26, 2711–2720. [Google Scholar] [CrossRef]
- Kunieda, M.; Nakaoka, K.; Liang, Y.; Miranda, C.R.; Ueda, A.; Takahashi, S.; Okabe, H.; Matsuoka, T. Self-Accumulation of Aromatics at the Oil-Water Interface through Weak Hydrogen Bonding. J. Am. Chem. Soc. 2010, 132, 18281–18286. [Google Scholar] [CrossRef] [PubMed]
- Hermansson, M. The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces 1999, 14, 105–119. [Google Scholar] [CrossRef]
- Apostolakis, J.; Ferrara, P.; Caflisch, A. Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water. J. Chem. Phys. 1999, 110, 2099–2108. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3680–3684. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An Nlog (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8570–8577. [Google Scholar] [CrossRef] [Green Version]
- Teklebrhan, R.B.; Ge, L.; Bhattacharjee, S.; Xu, Z.; Sjöblom, J. Probing Structure—Nanoaggregation Relations of Polyaromatic Surfactants: A Molecular Dynamics Simulation and Dynamic Light Scattering Study. J. Phys. Chem. B 2012, 116, 5907–5918. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Groups | △E+ (kJ/mol) | △E— (kJ/mol) |
---|---|---|
COO | 2.007 | 1.930 |
CH | 0.837 | 0.090 |
Oil Droplet Type | A | B | |
---|---|---|---|
Asphalt | Anionic Asp 1 | 32 | 0 0 |
Anionic Asp 2 | 32 | ||
Asp 1 | 0 0 | 32 | |
Asp 2 | 32 | ||
Cation | Na+ | 64 | 0 |
Hydrocarbon | Hexane | 256 | 256 |
Heptane | 236 | 236 | |
Octane | 276 | 276 | |
Nonane | 320 | 320 | |
Cyclohexane | 172 | 172 | |
Toluene | 276 | 276 | |
Benzene | 108 | 108 | |
Resin | Resin 1 | 40 | 40 |
Resin 2 Resin 3 | 40 40 | 40 40 | |
Resin 4 | 40 | 40 | |
Resin 5 | 40 | 40 | |
Resin 6 | 40 | 40 |
System | SDSn Number | Na+ Number | Water Number | Box Size (nm3) |
---|---|---|---|---|
A | 50 | 67 | 56,410 | 11 × 11 × 15 |
B | 50 | 50 | 57,609 | 11 × 11 × 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Yuan, S. Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation. Molecules 2020, 25, 3008. https://doi.org/10.3390/molecules25133008
Cheng Y, Yuan S. Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation. Molecules. 2020; 25(13):3008. https://doi.org/10.3390/molecules25133008
Chicago/Turabian StyleCheng, Yaoshuang, and Shiling Yuan. 2020. "Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation" Molecules 25, no. 13: 3008. https://doi.org/10.3390/molecules25133008
APA StyleCheng, Y., & Yuan, S. (2020). Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation. Molecules, 25(13), 3008. https://doi.org/10.3390/molecules25133008