Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Extraction Screening Using Different IL-Based Surfactants
2.2. Optimization of the MA-SLE Method Using the C16C4Im-Br IL
Influence of Chlorophyll Content on the Method Performance
2.3. Quantification of Phenolic Compounds by HPLC-PDA
2.3.1. Comparison between UA-SLE and MA-SLE Method Using Italian Cultivars
2.3.2. Analysis of Canarian Leaves Varieties by MA-SLE-HPLC-PDA
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation and Equipment
3.3. Plant Material
3.4. Procedures
3.4.1. Synthesis of IL-Based Surfactants
3.4.2. HPLC-PDA Analysis
3.4.3. MA-SLE Method Using an IL-Based Surfactant
3.4.4. Conventional UA-SLE Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Circular Economy Action Plan. Available online: https://ec.europa.eu/environment/circular-economy/pdf/new_circular_economy_action_plan.pdf (accessed on 13 June 2020).
- Pimentel-Moral, S.; Cádiz-Gurrea, M.L.; Rodríguez-Pérez, C.; Segura-Carretero, A. Recent advances in extraction technologies of phytochemicals applied for the revaluation of agri-food by-products. In Functional and Preservative Properties of Phytochemicals; Prakash, B., Ed.; Elsevier: Cambridge, MA, USA, 2020; pp. 209–239. [Google Scholar]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Nunes, M.A.; Rodrigues, F.; Oliveira, M.B.P.P. Grape Processing By-Products as Active Ingredients for Cosmetic Proposes. In Handbook of Grape Processing By-Products: Sustainable Solutions; Galanakis, C.M., Ed.; Elsevier: Cambridge, MA, USA, 2017; pp. 267–292. [Google Scholar]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef] [Green Version]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.; Ysunza, F.; Beltran-García, M.J.; Esqueda, M. Biodegradation of viticulture wastes by Pleurotus: A source of microbial and human food and its potential use in animal feeding. J. Agric Food Chem. 2002, 50, 2537–2542. [Google Scholar] [CrossRef]
- Harb, J.; Alseekh, S.; Tohge, T.; Fernie, A.R. Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. Phytochemistry 2015, 117, 444–455. [Google Scholar] [CrossRef]
- Gurbuz, Y. Determination of nutritive value of leaves of several Vitis vinifera varieties as a source of alternative feedstuff for sheep using in vitro and in situ measurements. Small Rumin. Res. 2007, 71, 59–66. [Google Scholar] [CrossRef]
- Monagas, M.; Hernández-Ledesma, B.; Gómez-Cordovés, C.; Bartolomé, B. Commercial dietary ingredients from Vitis vinifera L. leaves and grape skins: Antioxidant and chemical characterization. J. Agric. Food Chem. 2006, 54, 319–327. [Google Scholar] [CrossRef]
- Fernandes, F.; Ramalhosa, E.; Pires, P.; Verdial, J.; Valentão, P.; Andrade, P.; Bento, A.; Pereira, J.A. Vitis vinifera leaves towards bioactivity. Ind. Crops Prod. 2013, 43, 434–440. [Google Scholar] [CrossRef]
- Katalinic, V.; Mozina, S.S.; Generalic, I.; Skroza, D.; Ljubenkov, I.; Klancnik, A. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. Varieties. Int. J. Food Prop. 2013, 16, 45–60. [Google Scholar] [CrossRef]
- Acquadro, S.; Appleton, S.; Marengo, A.; Bicchi, C.; Sgorbini, B.; Mandrone, M.; Gai, F.; Peiretti, P.G.; Cagliero, C.; Rubiolo, P. Grapevine Green Pruning Residues as a Promising and Sustainable Source of Bioactive Phenolic Compounds. Molecules 2020, 25, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Poole, C.; Mester, Z.; Miró, M.; Pedersen-bjergaard, S.; Pawliszyn, J. Glossary of terms used in extraction (IUPAC Recommendations 2016). Pure Appl. Chem. 2016, 88, 517–558. [Google Scholar] [CrossRef] [Green Version]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Recent Advances in the Combination of Assisted Extraction Techniques. Compr. Anal. Chem. 2017, 76, 519–573. [Google Scholar]
- Pacheco-Fernández, I.; Pino, V. Green solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem. 2019, 18, 42–50. [Google Scholar] [CrossRef]
- Pacheco-Fernández, I.; González-Hernández, P.; Pino, V.; Ayala, J.H.; Afonso, A.M. Ionic Liquid-based Surfactants: A Step Forward. In Ionic Liquid Devices; Eftekhari, A., Ed.; Royal Society of Chemistry: London, UK, 2018; pp. 53–78. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Azhari, N.H. Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crops Prod. 2018, 122, 533–544. [Google Scholar] [CrossRef]
- Chu, C.; Wang, S.; Jiang, L.; Liu, C.; Zhang, H.; Yan, J. Microwave-assisted ionic liquid-based micelle extraction combined with trace-fluorinated carbon nanotubes in dispersive micro-solid-phase extraction to determine three sesquiterpenes in roots of Curcuma wenyujin. Phytochem. Anal. 2019, 30, 700–709. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Du, H.; He, S.; Li, Q.; Zhang, H. Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L. J. Pharm. Biomed. Anal. 2016, 125, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernández, I.; Pino, V.; Ayala, J.H.; Afonso, A.M. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid–liquid microextraction method for determining personal care products. J. Chromatogr. A 2018, 1559, 102–111. [Google Scholar] [CrossRef]
- Pacheco-Fernández, I.; Pino, V.; Lorenzo-Morales, J.; Ayala, J.H.; Afonso, A.M. Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Anal. Bioanal. Chem. 2018, 410, 4701–4713. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Q.; Li, Y. Self-aggregation and antimicrobial activity of alkylguanidium salts. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 11–16. [Google Scholar] [CrossRef]
- Baltazar, Q.Q.; Chandawalla, J.; Sawyer, K.; Anderson, J.L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 150–156. [Google Scholar] [CrossRef]
- Germán-Hernández, M.; Pino, V.; Anderson, J.L.; Afonso, A.M. Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by high-performance liquid chromatography with ultraviolet and fluorescence detection to determine the 15+1 EU priority PAHs in toasted cereals (“gofios”). Talanta 2011, 85, 1199–1206. [Google Scholar]
- Tao, Y.; Zhang, Z.; Sun, D.W. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrason Sonochem. 2014, 21, 1461–1469. [Google Scholar] [CrossRef]
- Li, X.J.; Yu, H.M.; Gao, C.; Zu, Y.G.; Wang, W.; Luo, M.; Gu, C.B.; Zhao, C.J.; Fu, Y.J. Application of ionic liquid-based surfactants in the microwave-assisted extraction for the determination of four main phloroglucinols from Dryopteris fragrans. J. Sep. Sci. 2012, 35, 3600–3608. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Xu, R.; Huang, M.; Zeng, H. Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. Analyst 2011, 136, 2294–2305. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; dos Santos, W.N.L.; Quintella, C.M.; Neto, B.B.; Bosque-Sendra, J.M. Doehlert matrix: A chemometric tool for analytical chemistry-review. Talanta 2004, 63, 1061–1067. [Google Scholar] [CrossRef]
- Tradit, A.J.; Altern, C.; Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y.; Bedong-semeling, J.; Nasi, B.A. Proper Actions. Lect. Notes Math. 2007, 1902, 121–130. [Google Scholar]
- Li, Y.; Chemat, F. Plant Based “Green Chemistry 2.0”, Moving from Evolutionary to Revolutionary; Springer: Singapore, Singapore, 2019. [Google Scholar]
- Dresch, R.R.; Dresch, M.T.K.; Biegelmeyer, R.; Argenta, D.F.; da Rocha, R.F.; Teixeira, H.F.; Moreira, J.C.F.; Henriques, A.T. Potential use of secondary products of the agri-food industry for topical formulations and comparative analysis of antioxidant activity of grape leaf polyphenols. Nat. Prod. Res. 2018, 32, 486–492. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Sicari, V.; Pellicanò, T.; Xiao, J.; Poiana, M.; Tundis, R. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food Chem. Toxicol. 2019, 127, 127–134. [Google Scholar] [CrossRef]
- Pintać, D.; Četojević-Simin, D.; Berežni, S.; Orčić, D.; Mimica-Dukić, N.; Lesjak, M. Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties. Food Chem. 2019, 286, 686–695. [Google Scholar] [CrossRef]
- Barrera Vázquez, M.F.; Comini, L.R.; Martini, R.E.; Núñez Montoya, S.C.; Bottini, S.; Cabrera, J.L. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrason. Sonochem. 2014, 21, 478–484. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT Food Sci. Technol. 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Fan, Y.; Niu, Z.; Xu, C.; Yang, L.; Yan, T. Protic Ionic Liquids as Efficient Solvents in Microwave-Assisted Extraction of Rhein and Emodin from Rheum palmatum L. Molecules 2019, 24, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef]
- Ye, Z.Y.; Li, Z.G.; Wei, D.; Lee, M.R. Microwave-assisted extraction/dispersive liquid-liquid microextraction coupled with DSI-GC-IT/MS for analysis of essential oil from three species of cardamom. Chromatographia 2014, 77, 347–358. [Google Scholar] [CrossRef]
- Zhong, Q.; Su, P.; Zhang, Y.; Wang, R.; Yang, Y. In-situ ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction of triazine herbicides. Microchim. Acta 2012, 178, 341–347. [Google Scholar] [CrossRef]
- Absalan, G.; Akhond, M.; Sheikhian, L. Extraction and high-performance liquid chromatographic determination of 3-indole butyric acid in pea plants by using imidazolium-based ionic liquids as extractant. Talanta 2008, 77, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Xu, B.; Li, X.; Wang, X.; Zhang, H.; Song, D. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal. Chim. Acta 2015, 888, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Xiao, X.H.; Luo, X.J.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Ma, W.; Lu, Y.; Hu, R.; Chen, J.; Zhang, Z.; Pan, Y. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 2010, 80, 1292–1297. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Liu, Q.; Li, S.; Wang, C.; Wang, Z.; Zhang, H. Microwave-assisted ionic liquid microextraction combined with high performance liquid chromatography for the determination of naphthoquinones from Arnebia euchroma (Royle) Johnst. J. Liq. Chromatogr. R. T. 2019, 42, 638–647. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, Y.; Kong, J.; Nie, C.; Yuan, Y. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants. Talanta 2010, 83, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Anal. Chim. Acta 2012, 732, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Haselgrove, L.; Botting, D.; Heeswijck, R.; Høj, P.B.; Dry, P.R.; Ford, C.; Land, P.G.I. Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Aust. J. Grape Wine Res. 2000, 6, 141–149. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of light and temp on Merlot. Am. J. Enol. Vitic. 2002, 3, 171–182. [Google Scholar]
Sample Availability: The samples are available from the authors. |
Vitis vinifera Variety (Method) | CA | RU | QUGlucos | QUGlucur | QU |
---|---|---|---|---|---|
This Study | |||||
Piedmont, Italian (US-SLE-HPLC-PDA) | 7.2 ± 0.9 | 0.6 ± 0.1 | 5 ±1 | 17 ± 2 | 0.27 ± 0.01 |
Piedmont, Italian (MA-SLE-HPLC-PDA) | 9.8 ± 0.5 | 0.9 ± 0.1 | 10.3 ± 0.4 | 32.1 ± 0.4 | 0.19 ± 0.01 |
ML, Canarian (MA-SLE-HPLC-PDA) | 7.7 ± 0.3 | 4.8 ± 0.2 | 8.1 ± 0.6 | 34 ± 2 | 0.25 ± 0.01 |
MA, Canarian (MA-SLE-HPLC-PDA) | 11 ± 2 | 1.4 ± 0.1 | 10 ± 1 | 65 ± 9 | 0.20 ± 0.01 |
LB, Canarian (MA-SLE-HPLC-PDA) | 9.7 ± 0.9 | 1.05 ± 0.07 | 7 ± 1 | 38± 3 | 0.26 ± 0.07 |
T, Canarian (MA-SLE-HPLC-PDA) | 13.1 ± 0.7 | 3.3 ± 0.1 | 5.5 ± 0.2 | 62 ± 9 | 0.25 ± 0.02 |
NM, Canarian (MA-SLE-HPLC-PDA) | 12.4 ± 0.7 | 1.9 ± 0.3 | 9 ± 1 | 39 ± 3 | 0.26 ± 0.01 |
LN, Canarian (MA-SLE-HPLC-PDA) | 10.0 ± 0.5 | 1.57 ± 0.05 | 3.4 ± 0.4 | 21 ± 1 | 0.23 ± 0.01 |
Values Reported in the Literature | |||||
Serbian (SLE-HPLC-MS/MS) a | – | 0.83 ± 0.02 | 5.8 ± 0.2 | – | 0.13 ± 0.03 |
Calabrian, Italian (US-SLE-HPLC-PDA) b | – | 0.10 ± 0.01 | – | – | 0.15 ± 0.01 |
Brazilian (SLE-HPLC-MS/MS) c | – | 0.03 | 0.82 | 3.78 | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastellone, G.; Pacheco-Fernández, I.; Rubiolo, P.; Pino, V.; Cagliero, C. Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants. Molecules 2020, 25, 3072. https://doi.org/10.3390/molecules25133072
Mastellone G, Pacheco-Fernández I, Rubiolo P, Pino V, Cagliero C. Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants. Molecules. 2020; 25(13):3072. https://doi.org/10.3390/molecules25133072
Chicago/Turabian StyleMastellone, Giulia, Idaira Pacheco-Fernández, Patrizia Rubiolo, Verónica Pino, and Cecilia Cagliero. 2020. "Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants" Molecules 25, no. 13: 3072. https://doi.org/10.3390/molecules25133072
APA StyleMastellone, G., Pacheco-Fernández, I., Rubiolo, P., Pino, V., & Cagliero, C. (2020). Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants. Molecules, 25(13), 3072. https://doi.org/10.3390/molecules25133072