Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of TpBD-(CF3)2
2.2. Extraction of Ibuprofen by TpBD-(CF3)2 in Natural Waters (Lake, River, and Estuary)
2.3. Theoretical Calculations of the Interactions of Ibuprofen with TpBD-(CF3)2
2.3.1. Models without Water
2.3.2. Models with Water
2.4. Comparative Extractions of Ibuprofen, Phenobarbital, and Acetaminophen from Lake Water by TpBD-(CF3)2
2.5. Extraction of Pharmaceuticals in Binary Mixtures from Lake Water by TpBD-(CF3)2
3. Materials and Methods
3.1. Chemicals and Instrumentation
3.2. Water Samples’ Locations and Physical-Chemical Parameters
3.3. Quantification of Pharmaceutical Products by HPLC
3.4. Stock Solutions
3.5. Calibration Curves of Ibuprofen, Acetaminophen, and Phenobarbital in Ultrapure Water
3.6. Extraction of Ibuprofen from Lake, River, and Estuary Waters, and Acetaminophen and Phenobarbital from Lake Water by TpBD-(CF3)2
3.7. Adsorption Experiments of Binary Mixtures of Ibuprofen and Acetaminophen or Phenobarbital in Lake Water by TpBD-(CF3)2
3.8. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosman, N.; Salleh, W.N.W.; Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Harun, Z. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J. Colloid Interface Sci. 2018, 532, 236–260. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Pharmaceuticals in Drinking Water; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/water_sanitation_health/publications/2011/pharmaceuticals_20110601.pdf (accessed on 3 February 2018).
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use; EMEA/CHMP/SWP/4447/00 corr 1; EMEA: London, UK, 2006. [Google Scholar]
- Reis-Santos, P.; Pais, M.; Duarte, B.; Caçador, I.; Freitas, A.; Vila Pouca, A.S.; Barbosa, J.; Leston, S.; Rosa, J.; Ramos, F.; et al. Screening of human and veterinary pharmaceuticals in estuarine waters: A baseline assessment for the Tejo estuary. Mar. Pollut. Bull. 2018, 135, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Lima, A.; Helena, M.; João, M.; Montemurro, N.; Pérez, S.; Lopez, M.; Alda, D. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. Sci. Total Environ. 2020, 709, 136205. [Google Scholar] [CrossRef]
- Science for Environment Policy. European Commission DG Environment News Alert Service; SCU, Ed.; The University of the West of England: Bristol, UK, May 2009; 152. [Google Scholar]
- Grassi, M.; Kaykioglu, G.; Belgiorno, V. Emerging Compounds Removal from Wastewater. In Emerging Compounds Removal from Wastewater Natural and Solar based Treatments; Lofrano, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 15–37. ISBN 978-94-007-3915-4. [Google Scholar]
- Engel, M.; Chefetz, B. The missing link between carbon nanotubes, dissolved organic matter and organic pollutants. Adv. Colloid Interface Sci. 2019, 271, 101993. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1–71. [Google Scholar] [CrossRef] [Green Version]
- Geng, K.; He, T.; Liu, R.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020. [Google Scholar] [CrossRef]
- Fernandes, S.P.S.; Romero, V.; Espiña, B.; Salonen, L.M. Tailoring Covalent Organic Frameworks To Capture Water Contaminants. Chem. Eur. J. 2019, 25, 6461–6473. [Google Scholar] [CrossRef]
- Lv, S.W.; Liu, J.M.; Wang, Z.H.; Ma, H.; Li, C.Y.; Zhao, N.; Wang, S. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J. Environ. Sci. 2019, 80, 169–185. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Salonen, L.M.; Pinela, S.R.; Fernandes, S.P.S.; Louçano, J.; Carbó-Argibay, E.; Sarriá, M.P.; Rodríguez-Abreu, C.; Peixoto, J.; Espiña, B. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework. J. Chromatogr. A 2017, 1525, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Romero, V.; Fernandes, S.P.S.; Rodriguez-Lorenzo, L.; Kolen’ko, Y.V.; Espiña, B.; Salonen, L.M. Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale 2019, 11, 6072–6079. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Niu, H.; Cao, D.; Cai, Y. Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals. Talanta 2019, 194, 522–527. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zeng, T.; Wang, S.; Niu, H.; Cai, Y. Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets. ACS Appl. Mater. Interfaces 2017, 9, 2959–2965. [Google Scholar] [CrossRef] [PubMed]
- Mellah, A.; Fernandes, S.P.S.; Rodríguez, R.; Otero, J.; Paz, J.; Cruces, J.; Medina, D.D.; Djamila, H.; Espiña, B.; Salonen, L.M. Adsorption of Pharmaceutical Pollutants from Water Using Covalent Organic Frameworks. Chem. Eur. J. 2018, 24, 10601–10605. [Google Scholar] [CrossRef]
- Huang, L.; Mao, N.; Yan, Q.; Zhang, D.; Shuai, Q. Magnetic Covalent Organic Frameworks for the Removal of Diclofenac Sodium from Water. ACS Appl. Nano Mater. 2020, 3, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Chen, P.; Zhang, Q.; Chen, P.; Zheng, X.; Wu, Y.; Ma, D.; Wei, D.; Liu, H.; Liu, G.; et al. Removal of pharmaceuticals and personal care products (PPCPs) from water and wastewater using novel sulfonic acid (-SO3H) functionalized covalent organic frameworks. Environ. Sci. Nano 2019, 6, 3374–3387. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van Der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665–2681. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, B.H.; Ma, M.Q.; Wang, Z.; Xu, Z.K. Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem. Soc. Rev. 2019, 48, 3811–3841. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Wang, J.; Li, X. Two-Dimensional Covalent Organic Frameworks (COFs) for Membrane Separation: A Mini Review. Ind. Eng. Chem. Res. 2019, 58, 15394–15406. [Google Scholar] [CrossRef]
- Corcos, A.R.; Levato, G.A.; Jiang, Z.; Evans, A.M.; Livingston, A.G.; Mariñas, B.J.; Dichtel, W.R. Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection. ACS Mater. Lett. 2019, 1, 440–446. [Google Scholar] [CrossRef]
- Shawahna, R.; Rahman, N.U. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: A provisional biopharmaceutical classification of the list of national essential medicines of Pakistan. DARU 2011, 19, 83–99. [Google Scholar]
- La Rotonda, M.I.; Amato, G.; Barbato, F.; Silipo, C.; Vittoria, A. Relationships between Octanol-Water Partition Data, Chromatographic Indices and Their Dependence on pH in a Set of Nonsteroidal Anti-Inflammatory Drugs. Quant. Struct. Act. Relationsh. 1983, 2, 168–173. [Google Scholar] [CrossRef]
- Bialer, M. How did phenobarbital’s chemical structure affect the development of subsequent antiepileptic drugs (AEDs)? Epilepsia 2012, 53, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F. kinetics and metabolism of paracetamol and phenacetin. Br. J. Clin. Pharmacol. 1980, 10, 291–298. [Google Scholar] [CrossRef] [Green Version]
- The DrugBank Database. Available online: https://www.drugbank.ca (accessed on 23 April 2018).
- Valls-Cantenys, C.; Scheurer, M.; Iglesias, M.; Sacher, F.; Brauch, H.J.; Salvadó, V. A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water. Anal. Bioanal. Chem. 2016, 408, 6189–6200. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.K.; Oh, S.Y.; Park, H.S. Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int. J. Environ. Sci. Technol. 2012, 9, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Climate Report from May 2017; IPMA: Lisbon, Portugal, 2017; ISBN 2183-107.
- Kwan, P.; Brodie, M.J. Phenobarbital for the Treatment of Epilepsy in the 21st Century: A Critical Review. Epilepsia 2004, 45, 1141–1149. [Google Scholar] [CrossRef]
- Hass, U.; Duennbier, U.; Massmann, G. Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany). Water Res. 2012, 46, 6013–6022. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Liu, X.; Jiang, X.; Zhang, Z.; Zhang, T.; Zhang, L. The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem. Eng. J. 2014, 246, 88–96. [Google Scholar] [CrossRef]
- BIOVIA, Dassault Systèmes. Materials Studio, 8.0.; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Heinz, H.; Lin, T.J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. Compass: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
Sample Availability: Samples of TpBD-(CF3)2 COF are available from the authors. |
Ibuprofen | Phenobarbital | Acetaminophen | |
---|---|---|---|
Dimensions [Å] | a 8.8 × 4.5 × 2.4 | b 6.5 × 4.5 × 4.3 | c 7.9 × 2.4 × 0.8 |
logD6.0 [26] | 2.12 | 1.66 | 0.34 |
pKa | 5.2 [27] | 7.3 [28] | 9.5 [29] |
Water solubility [g L−1] | 0.021 [30] | 1 [28] | 14 [30] |
Lake | River | Estuary | ||
---|---|---|---|---|
[µM] | qt (mg g−1) | qt (mg g−1) | qt (mg g−1) | |
Ibuprofen | 50 | 26.2 ± 0.2 | 6.2 ± 2.1 | 9.7 ± 9.3 |
100 | 42.3 ± 0.3 | 27.2 ± 6.0 | 14.1 ± 2.6 |
Individual Pharmaceutical | Binary Mixture | ||
---|---|---|---|
[µM] | Ibuprofen | Acetaminophen | Ibuprofen/Acetaminophen |
50/150 | 26.2 ± 0.2 | 19.1 ± 2.1 | 27.3 ± 0.2 / 19.6 ± 1.9 |
100/100 | 42.3 ± 0.3 | 14.6 ± 5.5 | 58.1 ± 0.3 / 5.5 ± 0.1 |
Ibuprofen | Phenobarbital | Ibuprofen/Phenobarbital | |
50/150 | 26.2 ± 0.2 | 6.6 ± 2.4 | 27.6 ± 0.01 / 7.1 ± 2.0 |
100/100 | 42.3 ± 0.3 | 3.3 ± 3.5 | 57.3 ± 0.1 / 1.3 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, S.P.S.; Mellah, A.; Kovář, P.; Sárria, M.P.; Pšenička, M.; Djamila, H.; Salonen, L.M.; Espiña, B. Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules 2020, 25, 3132. https://doi.org/10.3390/molecules25143132
Fernandes SPS, Mellah A, Kovář P, Sárria MP, Pšenička M, Djamila H, Salonen LM, Espiña B. Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules. 2020; 25(14):3132. https://doi.org/10.3390/molecules25143132
Chicago/Turabian StyleFernandes, Soraia P. S., Abdelkarim Mellah, Petr Kovář, Marisa P. Sárria, Milan Pšenička, Harik Djamila, Laura M. Salonen, and Begoña Espiña. 2020. "Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework" Molecules 25, no. 14: 3132. https://doi.org/10.3390/molecules25143132
APA StyleFernandes, S. P. S., Mellah, A., Kovář, P., Sárria, M. P., Pšenička, M., Djamila, H., Salonen, L. M., & Espiña, B. (2020). Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules, 25(14), 3132. https://doi.org/10.3390/molecules25143132