N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Platinum(II) and Platinum(IV) Complexes
2.2. In Vitro Activities against Cancer Cell Lines
2.3. 195Pt NMR Spectroscopy
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gietema, J.A.; Meinardi, M.T.; Messerschmidt, J.; Gelevert, T.; Alt, F.; Uges, D.; Seijfer, D.T. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 2000, 355, 1075–1076. [Google Scholar] [CrossRef]
- Cheff, D.M.; Hall, M.D. A Drug of Such Damned Nature. 1 Challenges and Opportunities in Translational Platinum Drug Research: Miniperspective. J. Med. Chem. 2017, 60, 4517–4532. [Google Scholar] [CrossRef] [PubMed]
- Um, I.S.; Armstrong-Gordon, E.; Moussa, Y.E.; Gnjidic, D.; Wheate, N.J. Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums? Inorg. Chim. Acta 2019, 492, 177–181. [Google Scholar] [CrossRef]
- Gibson, D. Multi-action Pt (IV) anticancer agents; do we understand how they work? J. Inorg. Biochem. 2019, 191, 77–84. [Google Scholar] [CrossRef]
- Hall, M.D.; Hambley, T.W. Platinum (IV) antitumour compounds: Their bioinorganic chemistry. Coord. Chem. Rev. 2002, 232, 49–67. [Google Scholar] [CrossRef]
- Bouché, M.; Bonnefont, A.; Achard, T.; Bellemin-Laponnaz, S. Exploring diversity in platinum (IV) N-heterocyclic carbene complexes: Synthesis, characterization, reactivity and biological evaluation. Dalton Trans. 2018, 33, 11491–11502. [Google Scholar] [CrossRef]
- Bouché, M.; Dahm, G.; Wantz, M.; Fournel, S.; Achard, T.; Bellemin-Laponnaz, S. Platinum (IV) N-heterocyclic carbene complexes: Their synthesis, characterisation and cytotoxic activity. Dalton Trans. 2016, 45, 11362–11368. [Google Scholar] [CrossRef]
- Chardon, E.; Dahm, G.; Guichard, G.; Bellemin-Laponnaz, S. Derivatization of preformed platinum N-heterocyclic carbene complexes with amino acid and peptide ligands and cytotoxic activities toward human cancer cells. Organometallics 2012, 31, 7618–7621. [Google Scholar] [CrossRef]
- Bellemin-Laponnaz, S. N-Heterocyclic Carbene Platinum Complexes: A Big Step Forward for Effective Antitumor Compounds. Eur. J. Inorg. Chem. 2020, 2020, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Priqueler, J.R.L.; Butler, I.S.; Rochon, D.D. High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters. Appl. Spectrosc. Rev. 2006, 41, 185–226. [Google Scholar] [CrossRef]
- Höfer, D.; Varbaniv, H.P.; Hejl, M.; Jakupec, M.A.; Roller, A.; Galanski, M.; Keppler, B.K. Impact of the equatorial coordination sphere on the rate of reduction, lipophilicity and cytotoxic activity of platinum (IV) complexes. J. Inorg. Biochem. 2017, 174, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, T.C.; Alexander, S.M.; Wilson, J.J.; Lippard, S.J. Oxidative halogenation of cisplatin and carboplatin: Synthesis, spectroscopy, and crystal and molecular structures of Pt (IV) prodrugs. Dalton Trans. 2015, 44, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokach, N.A.; Kukushkin, V.Y.; Kuznetsov, M.L.; Garnovskii, D.A.; Natile, G.; Pombeiro, A.J.L. Direct addition of alcohols to organonitriles activated by ligation to a platinum (IV) center. Inorg. Chem. 2002, 41, 2041–2053. [Google Scholar] [CrossRef]
- Still, B.M.; Anil Kumar, P.G.; Aldrich-Wright, J.R.; Price, W.S. 195Pt NMR—Theory and application. Chem. Soc. Rev. 2007, 36, 665–686. [Google Scholar] [CrossRef]
- Hu, D.; Yang, C.; Lok, C.-N.; Xing, F.; Lee, P.-Y.; Fung, Y.M.E.; Jiang, H.; Che, C.-M. An Antitumor Bis (N-Heterocyclic Carbene) Platinum (II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew. Chem. Int. Ed. 2019, 58, 10914–10918. [Google Scholar] [CrossRef]
- Matczuk, M.; Ruzik, L.; Alekssanko, S.S.; Keppler, B.K.; Jarosz, M.; Timerbaev, A.R. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal. Chim. Acta 2019, 1052, 1–9. [Google Scholar] [CrossRef]
- Galvez, L.; Theiner, S.; Grabarics, M.; Kowol, C.R.; Keppler, B.K.; Hann, S.; Koellensperger, G. Critical assessment of different methods for quantitative measurement of metallodrug-protein associations. Anal. Bioanal. Chem. 2018, 410, 7211–7220. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S. Kinetic aspects of platinum anticancer agents. Polyhedron 2017, 138, 109–124. [Google Scholar] [CrossRef]
- Hall, M.D.; Daly, H.L.; Zhang, J.Z.; Zhang, M.; Alderden, R.A.; Pursche, D.; Foran, G.J.; Hambley, T.W. Quantitative measurement of the reduction of platinum (IV) complexes using X-ray absorption near-edge spectroscopy (XANES). Metallomics 2012, 4, 568–575. [Google Scholar] [CrossRef]
- Czapla-Masztafiak, J.; Kubas, A.; Kayser, Y.; Fernandes, D.L.A.; Kwiatek, W.M.; Lipiec, E.; Deacon, G.B.; Al-Jorani, K.; Wood, B.R.; Szlachetko, J.; et al. Mechanism of hydrolysis of a platinum (IV) complex discovered by atomic telemetry. J. Inorg. Biochem. 2018, 187, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.V. The Organometallic Chemistry of N-heterocyclic Carbenes; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Teng, Q.Q.; Huynh, H.V. A Unified Ligand Electronic Parameter Based on 13 C NMR Spectroscopy of N-heterocyclic Carbene Complexes. Dalton Trans. 2017, 46, 614–627. [Google Scholar] [CrossRef]
- Teng, Q.Q.; Ng, P.S.; Leung, J.N.; Huynh, H.V. Donor strengths determination of pnictogen and chalcogen ligands by the Huynh electronic parameter and its correlation to sigma Hammett constants. Chem. Eur. J. 2019, 25, 13956–13963. [Google Scholar] [CrossRef] [Green Version]
- Tsipis, A.C.; Karapetsas, I.N. Prediction of 195Pt NMR of photoactivable diazido- and azine-Pt(IV) anticancer agents by DFT computational protocols. Magn. Reson. Chem. 2017, 55, 145–153. [Google Scholar] [CrossRef]
- Appleton, T.G.; Berry, R.D.; Davis, C.A.; Hall, J.R.; Kimlin, H.A. Reactions of platinum(II) aqua complexes. I: Multinuclear (195Pt, 15N, and 31P) NMR study of reactions between the cis-diamminediaquaplatinum(II) cation and the oxygen-donor ligands hydroxide, perchlorate, nitrate, sulfate, phosphate, and acetate. Inorg. Chem. 1984, 23, 3514–3531. [Google Scholar] [CrossRef]
- Appleton, T.G.; Hall, J.R.; Ralph, S.F.; Thompson, C.S.M. Reactions of platinum(II) aqua complexes. 2. Platinum-195 NMR study of reactions between the tetraaquaplatinum(II) cation and chloride, hydroxide, perchlorate, nitrate, sulfate, phosphate, and acetate. Inorg. Chem. 1984, 23, 3521–3525. [Google Scholar] [CrossRef]
- Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 2009, 111, 2705–2733. [Google Scholar] [CrossRef] [PubMed]
- Sutter, K.; Autschbach, J. Computational study and molecular orbital analysis of NMR shielding, spin–spin coupling, and electric field gradients of azido platinum complexes. J. Am. Chem. Soc. 2012, 134, 13374–13385. [Google Scholar] [CrossRef]
- Dahm, D.; Bailly, C.; Karmazin, L.; Bellemin-Laponnaz, S. Synthesis, structural characterization and in vitro anti-cancer activity of functionalized N-heterocyclic carbene platinum and palladium complexes. J. Organomet. Chem. 2015, 794, 115–124. [Google Scholar] [CrossRef]
- Chardon, E.; Puleo, G.-L.; Dahm, G.; Guichard, G.; Bellemin-Laponnaz, S. Direct functionalisation of group 10 N-heterocyclic carbene complexes for diversity enhancement. Chem. Commun. 2011, 47, 5864–5866. [Google Scholar] [CrossRef]
- Chtchigrovsky, M.; Eloy, L.; Jullien, H.; Saker, L.; Ségal-Bendirdjian, E.; Poupon, J.; Bombard, S.; Cresteil, T.; Retailleau, P.; Marinetti, A. Antitumor trans-N-Heterocyclic Carbene–Amine–Pt(II) Complexes: Synthesis of Dinuclear Species and Exploratory Investigations of DNA Binding and Cytotoxicity Mechanisms. J. Med. Chem. 2013, 56, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Skander, M.; Retailleau, P.; Bourri, B.; Schio, L.; Mailliet, P.; Marinetti, A. N-heterocyclic carbene-amine Pt (II) complexes, a new chemical space for the development of platinum-based anticancer drugs. J. Med. Chem. 2010, 53, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Port, R.E.; Zabel, H.-J.; Zeller, W.J.; Bachert, P. Monitoring Local Disposition Kinetics of Carboplatinin Vivoafter Subcutaneous Injection in Rats by Means of 195Pt NMR. J. Magn. Reson. 1998, 133, 115–122. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Complex Number | Structure | IC50 (µM) HCT116 1 | IC50 (µM) MCF7 1 | IC50 (µM) PC3 1 |
---|---|---|---|---|
Cisplatin | (NH3)2PtCl2 | 3.57 ± 0.1 | 4.15 ± 0.7 | 3.10 ± 0.2 |
2 | (NHC)PtBr2(pyr) | 5.44 ± 1 | 7.73 ± 1 | 5.35 ± 1.6 |
3 | (NHC)PtBr2(DMSO) | >100 | >100 | >100 |
4 | (NHC)PtCl2(DMSO) | 63 ± 5 | 80 ± 13 | 65 ± 6 |
5 | (NHC)PtCl2(pyr) | 3.78 ± 0.1 | 3.48 ± 1 | 4.40 ± 0.9 |
6 | (NHC)PtBr4(amine) | 7.5 ± 0.3 | 23 ± 5 | 10 ± 1 |
8 | 14 ± 2 | 5 ± 1 | 5 ± 1 | |
12 | 11 ± 0.3 | 3 ± 0.7 | 2 ± 0.5 | |
16 | 81.09 ± 2 | 17.22 ± 1.8 | 5.42 ± 0.5 | |
19 | 5 ± 1 | 4 ± 0.2 | 5 ± 1 | |
22 | (NHC)PtCl4(amine) | 0.5 ± 0.03 | 0.5 ± 0.09 | 1 ± 0.1 |
25 | 1.48 ± 0.2 | 1.78 ± 0.6 | 1.31 ± 0.2 |
Complex | Ox. State | δPt (ppm) 195Pt NMR | δC (ppm) 13C NMR |
---|---|---|---|
1 | +II | −4313 | 125.1 |
2 | +II | −3814 | 138.2 |
3 | +II | −3356 | 154.7 |
4 | +II | −3351 | n.o. 1 |
5 | +II | −3304 | n.o. |
6 | +IV | −2196 | n.o. |
7 | +IV | −2168 | 113.4 |
8 | +IV | −2168 | 115.2 |
9 | +IV | −2167 | 133.9 |
10 | +IV | −2083 | 124.6 |
11 | +IV | −2081 | n.o. |
12 | +IV | −2080 | 112.7 |
13 | +IV | −2079 | 115.4 |
14 | +IV | −2070 | n.o. |
15 | +IV | −2067 | n.o. |
16 | +IV | −2063 | 110.8 |
17 | +IV | −2058 | 110.7 |
18 | +IV | −2048 | 109.3 |
19 | +IV | −2040 | 109.2 |
20 | +IV | −2032 | n.o. |
21 | +IV | −1901 | n.o. |
22 | +IV | −883 | n.o. |
23 | +IV | −853 | n.o. |
24 | +IV | −825 | 112.9 |
25 | +IV | −810 | 111.5 |
26 | +IV | −795 | n.o. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouché, M.; Vincent, B.; Achard, T.; Bellemin-Laponnaz, S. N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend. Molecules 2020, 25, 3148. https://doi.org/10.3390/molecules25143148
Bouché M, Vincent B, Achard T, Bellemin-Laponnaz S. N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend. Molecules. 2020; 25(14):3148. https://doi.org/10.3390/molecules25143148
Chicago/Turabian StyleBouché, Mathilde, Bruno Vincent, Thierry Achard, and Stéphane Bellemin-Laponnaz. 2020. "N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend" Molecules 25, no. 14: 3148. https://doi.org/10.3390/molecules25143148
APA StyleBouché, M., Vincent, B., Achard, T., & Bellemin-Laponnaz, S. (2020). N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend. Molecules, 25(14), 3148. https://doi.org/10.3390/molecules25143148