Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure-Based Virtual Screening
- Semi-rigid molecular docking into the tankyrase binding site was performed using the Smina software and the compounds were selected based on the values of the Vinardo scoring function. The previously developed machine learning-based scoring function was also employed as an additional screening filter.
- Compounds that have acceptable molecular weight, lipophilicity (LogP), aqueous solubility and human intestinal absorption as well as low risk of hERG-mediated cardiac toxicity were selected (the properties were predicted using previously developed QSPR/QSAR models).
- Expert analysis of the resulting compounds was performed to eliminate potentially unstable, reactive or excessively complex structures.
- For the seven selected compounds, molecular dynamics simulations and MM-PBSA calculations were carried out in order to provide additional independent assessment of their potential activity.
- Biological evaluation of inhibitory activity of the selected compounds was carried out.
2.2. Biological Evaluation
2.3. Retrospective Analysis of the Virtual Screening Results
2.4. Molecular Dynamics Studies
2.4.1. Binding Modes
2.4.2. FEP Calculations
3. Materials and Methods
3.1. Virtual Screening Library
3.2. Molecular Docking
3.3. Prediction of Physicochemical and ADMET Properties
3.4. Biological Evaluation
3.5. Molecular Dynamics Studies
3.5.1. Basic Molecular Dynamics Simulation Protocol
3.5.2. MM-PBSA Calculations
3.5.3. Absolute FEP Calculations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Concentration-Response Curves for Compounds A1 and A3
Compound | ||||
---|---|---|---|---|
A1 | 8.5 ± 0.2 | 17.1 ± 0.2 | 3.1 ± 0.5 nM | 0.8 ± 0.1 |
A3 | 4 ± 2 | 25 ± 3 | 4 ± 2 μM | 1.2 ± 0.6 |
Appendix B. Prediction of Physicochemical and ADMET Properties of Compounds A1–A7
Compound | MW | LogPow | pS | LogBB | HIA | hERG pKi | hERG pIC50 |
---|---|---|---|---|---|---|---|
A1 | 414.42 | 1.98 | 4.35 | 0.53 | 100.0 | 4.26 | 4.00 |
A2 | 436.48 | 2.57 | 4.72 | −0.60 | 100.0 | 5.04 | 5.03 |
A3 | 416.43 | 3.33 | 4.94 | −0.46 | 90.8 | 5.65 | 4.50 |
A4 | 394.44 | 2.76 | 4.23 | −1.23 | 100.0 | 5.49 | 5.63 |
A5 | 401.43 | 3.10 | 4.05 | 1.52 | 93.0 | 4.86 | 4.65 |
A6 | 305.30 | 2.38 | 3.71 | 0.20 | 87.5 | 4.04 | 4.66 |
A7 | 429.39 | 2.23 | 4.42 | −1.10 | 97.6 | 5.05 | 5.92 |
References
- Riffell, J.L.; Lord, C.J.; Ashworth, A. Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 2012, 11, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.; Elliott, R.; Bowers, L.; Balan, N.; Rafiq, R.; Costa-Cabral, S.; Munkonge, F.; Trinidade, I.; Porter, R.; Campbell, A.D.; et al. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep. 2019, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arqués, O.; Chicote, I.; Puig, I.; Tenbaum, S.P.; Argilés, G.; Dienstmann, R.; Fernández, N.; Caratù, G.; Matito, J.; Silberschmidt, D.; et al. Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin. Cancer Res. 2016, 22, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Haikarainen, T.; Waaler, J.; Ignatev, A.; Nkizinkiko, Y.; Venkannagari, H.; Obaji, E.; Krauss, S.; Lehtiö, L. Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Narwal, M.; Venkannagari, H.; Lehtiö, L. Structural basis of selective inhibition of human tankyrases. J. Med. Chem. 2012, 55, 1360–1367. [Google Scholar] [CrossRef]
- Narwal, M.; Fallarero, A.; Vuorela, P.; Lehtiö, L. Homogeneous screening assay for human tankyrase. J. Biomol. Screen. 2012, 17, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J. Med. Chem. 2010, 53, 5352–5355. [Google Scholar] [CrossRef]
- Voronkov, A.; Holsworth, D.D.; Waaler, J.; Wilson, S.R.; Ekblad, B.; Perdreau-Dahl, H.; Dinh, H.; Drewes, G.; Hopf, C.; Morth, J.P.; et al. Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. J. Med. Chem. 2013, 56, 3012–3023. [Google Scholar] [CrossRef]
- Nkizinkiko, Y.; Desantis, J.; Koivunen, J.; Haikarainen, T.; Murthy, S.; Sancineto, L.; Massari, S.; Ianni, F.; Obaji, E.; Loza, M.I.; et al. 2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors. Sci. Rep. 2018, 8, 1680. [Google Scholar] [CrossRef] [Green Version]
- Lehtiö, L.; Chi, N.-W.; Krauss, S. Tankyrases as drug targets. FEBS J. 2013, 280, 3576–3593. [Google Scholar] [CrossRef]
- Thorsell, A.-G.; Ekblad, T.; Karlberg, T.; Löw, M.; Pinto, A.F.; Trésaugues, L.; Moche, M.; Cohen, M.S.; Schüler, H. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase Inhibitors. J. Med. Chem. 2017, 60, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Berishvili, V.P.; Voronkov, A.E.; Radchenko, E.V.; Palyulin, V.A. Machine learning classification models to improve the docking-based screening: A case of PI3K-tankyrase inhibitors. Mol. Inform. 2018, 37, e1800030. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Chodera, J.D.; Mobley, D.L.; Shirts, M.R.; Dixon, R.W.; Branson, K.; Pande, V.S. Alchemical free energy methods for drug discovery: Progress and challenges. Curr. Opin. Struct. Biol. 2011, 21, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model. 2017, 57, 2911–2937. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Chéron, N.; Shakhnovich, E.I. Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. J. Comput. Chem. 2017, 38, 1941–1951. [Google Scholar] [CrossRef]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef]
- Aldeghi, M.; Heifetz, A.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. Accurate calculation of the absolute free energy of binding for drug molecules. Chem. Sci. 2015, 7, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berishvili, V.P.; Perkin, V.O.; Voronkov, A.E.; Radchenko, E.V.; Syed, R.; Venkata Ramana Reddy, C.; Pillay, V.; Kumar, P.; Choonara, Y.E.; Kamal, A.; et al. Time-domain analysis of molecular dynamics trajectories using deep neural networks: Application to activity ranking of tankyrase inhibitors. J. Chem. Inf. Model. 2019, 59, 3519–3532. [Google Scholar] [CrossRef] [PubMed]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A.; Zefirov, N.S. Prediction of human intestinal absorption of drug compounds. Russ. Chem. Bull. 2016, 65, 576–580. [Google Scholar] [CrossRef]
- Radchenko, E.V.; Rulev, Y.A.; Safanyaev, A.Y.; Palyulin, V.A.; Zefirov, N.S. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Dokl. Biochem. Biophys. 2017, 473, 128–131. [Google Scholar] [CrossRef]
- Dyabina, A.S.; Radchenko, E.V.; Palyulin, V.A.; Zefirov, N.S. Prediction of blood-brain barrier permeability of organic compounds. Dokl. Biochem. Biophys. 2016, 470, 371–374. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinforma. 2016, 54, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Shapovalov, M.V.; Dunbrack, R.L. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011, 19, 844–858. [Google Scholar] [CrossRef] [Green Version]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Kumar, R. Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Yang, T.; Wu, J.C.; Yan, C.; Wang, Y.; Luo, R.; Gonzales, M.B.; Dalby, K.N.; Ren, P. Virtual screening using molecular simulations. Proteins 2011, 79, 1940–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlov, D.S.; Lavrov, M.I.; Palyulin, V.A.; Zefirov, N.S. MM-GBSA and MM-PBSA performance in activity evaluation of AMPA receptor positive allosteric modulators. J. Biomol. Struct. Dyn. 2018, 36, 2508–2516. [Google Scholar] [CrossRef]
- Aldeghi, M.; Bluck, J.P.; Biggin, P.C. Absolute alchemical free energy calculations for ligand binding: A beginner’s guide. Methods Mol. Biol. 2018, 1762, 199–232. [Google Scholar] [CrossRef]
- Shirts, M.R.; Chodera, J.D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 2008, 129, 124105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimovich, P.V.; Shirts, M.R.; Mobley, D.L. Guidelines for the analysis of free energy calculations. J. Comput.-Aided Mol. Des. 2015, 29, 397–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. Absolute binding free energies: A quantitative approach for their calculation. J. Phys. Chem. B 2003, 107, 9535–9551. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | Binding Affinity Predicted by Docking Scoring Function, kcal/mol | Binding Probability Predicted by ML Scoring Function | Binding Energy Calculated by MM-PBSA, kcal/mol |
---|---|---|---|
A1 | −12.8 ± 0.1 | 0.61 ± 0.1 | −32.5 ± 10.3 |
A2 | −12.4 ± 0.2 | 0.70 ± 0.1 | −36.3 ± 9.8 |
A3 | −12.4 ± 0.1 | 0.62 ± 0.1 | −30.8 ± 9.2 |
A4 | −11.7 ± 0.1 | 0.24 ± 0.1 | −28.1 ± 9.6 |
A5 | −12.6 ± 0.2 | 0.15 ± 0.1 | −29.1 ± 9.7 |
A6 | −12.5 ± 0.1 | 0.46 ± 0.1 | −31.2 ± 8.0 |
A7 | −12.6 ± 0.1 | 0.56 ± 0.1 | −32.0 ± 8.8 |
Binding Free Energy (kcal/mol) | A1 | A2 a | A3 a | A7 a | |
---|---|---|---|---|---|
Free energy of decoupling and restraining the ligand in a complex | −49.5 ± 0.2 | −35.2 ± 0.2 (14.3) | −32.9 ± 0.2 (16.6) | −39.4 ± 0.2 (10.1) | |
Coulomb term | −30.2 ±0.1 | −15.9 ± 0.1 (14.3) | −20.6 ± 0.1 (9.6) | −22.1 ± 0.1 (8.1) | |
van der Waals andrestraint term | −19.3 ± 0.1 | −19.3 ± 0.2 (0.0) | −12.3 ± 0.1 (7.0) | −17.3 ± 0.1 (2.0) | |
Free energy of decoupling the ligand in solution | 31.4 ± 0.1 | 20.3 ± 0.1 (−11.1) | 22.0 ± 0.1 (−9.4) | 40.2 ± 0.1 (8.8) | |
Coulomb term | 29.5 ± 0.1 | 18.1 ± 0.1 (−11.4) | 21.5 ± 0.1 (−8.0) | 37.1 ± 0.1 (7.6) | |
van der Waals term | 1.9 ± 0.1 | 2.2 ± 0.1 (0.3) | 0.5 ± 0.1 (−1.4) | 3.1 ± 0.1 (1.2) | |
Free energy for restraining the decoupled ligand in solution | 7.3 | 6.7 (−0.6) | 7.0 (−0.3) | 6.8 (−0.5) | |
Total free energy of binding | −10.8 ± 0.2 | −8.2 ± 0.2 (2.6) | −4.0 ± 0.2 (6.8) | 7.6 ± 0.2 (18.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berishvili, V.P.; Kuimov, A.N.; Voronkov, A.E.; Radchenko, E.V.; Kumar, P.; Choonara, Y.E.; Pillay, V.; Kamal, A.; Palyulin, V.A. Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules 2020, 25, 3171. https://doi.org/10.3390/molecules25143171
Berishvili VP, Kuimov AN, Voronkov AE, Radchenko EV, Kumar P, Choonara YE, Pillay V, Kamal A, Palyulin VA. Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules. 2020; 25(14):3171. https://doi.org/10.3390/molecules25143171
Chicago/Turabian StyleBerishvili, Vladimir P., Alexander N. Kuimov, Andrew E. Voronkov, Eugene V. Radchenko, Pradeep Kumar, Yahya E. Choonara, Viness Pillay, Ahmed Kamal, and Vladimir A. Palyulin. 2020. "Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies" Molecules 25, no. 14: 3171. https://doi.org/10.3390/molecules25143171
APA StyleBerishvili, V. P., Kuimov, A. N., Voronkov, A. E., Radchenko, E. V., Kumar, P., Choonara, Y. E., Pillay, V., Kamal, A., & Palyulin, V. A. (2020). Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules, 25(14), 3171. https://doi.org/10.3390/molecules25143171