New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium psychrophilum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cu(I) Coordination Compound [Cu(NN1)2]ClO4, Where NN1 Is a Ligand Obtained from Coumarin 1-benzopyran-2-one
2.2. Structural Characterization NMR
2.3. Characterization in Solution
2.3.1. UV-Vis
2.3.2. Cyclic Voltammetry
2.4. Antibacterial Activity against Flavobacterium psychrophilum
2.4.1. Antibacterial Test
2.4.2. Cytotoxicity Test
3. Experimental Section
3.1. General Methods
3.2. 6-Nitrocoumarin
3.3. 6-Aminocoumarin
3.4. Ligand: NN1
3.5. Coordination Complex Cu(I): [Cu(NN1)2]ClO4
3.6. Bacterial Strain and Growth Conditions
3.7. Antibacterial Test
3.8. Cytotoxicity Test
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nematollahi, A.; Decostere, A.; Pasmans, F.; Haesebrouck, F. Flavobacterium psychrophilum infections in salmonid fish. J. Fish. Dis. 2003, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.E.; Brown, M.L. A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. Open Fish Sci. J. 2011, 4, 40–48. [Google Scholar] [CrossRef]
- Sernapesca. Informe Sanitario de Salmonicultura en Centros Marinos Primer Semestre; Gobierno de Chile: Santiago, RM, Chile, 2018. [Google Scholar]
- Jarau, M.; MacInnes, J.I.; Lumsden, J.S. Erythromycin and florfenicol treatment of rainbow trout Oncorhynchus mykiss (Walbaum) experimentally infected with Flavobacterium psychrophilum. J. Fish. Dis. 2019, 42, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Lozano, I.; Díaz Pérez, N.; Muñoz Mimiza, S.; Riquelme, C. Antibiotics in chilean aquaculture: A review. In Antibiotic Use in Animals; IntechOpen Limited: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Faúndez, G.; Troncoso, M.; Navarrete, P.; Figueroa, G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004, 4, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.A.; Yang, H.; Seo, C.W. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157: H7 in laboratory medium and carrot juice. Food Chem. 2008, 109, 137–143. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A.; Abu Hasfa, S.H.; Smqadri, S.Q.; Haik, Y. Antimicrobial activity of copper alone and in combination with lactic acid against Escherichia coli O157: H7 in laboratory medium and on the surface of lettuce and tomatoes. J. Pathog. 2011, 650968–650976. [Google Scholar] [CrossRef] [Green Version]
- Speisky, H.; López-Alarcón, C.; Olea-Azar, C.; Sandoval-Acuña, C.; Aliaga, M.E. Role of superoxide anions in the redox changes affecting the physiologically occurring Cu (I)-glutathione complex. Bioinorg. Chem. Appl. 2011, 674149–674156. [Google Scholar] [CrossRef] [Green Version]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Olah, G.A.; Malhotra, R.; Narang, S.C. Nitration: Methods and Mechanisms; Wiley-Interscience: Weinheim, Germany, 1989; pp. 13–15. ISBN 978-0-471-18695-3. [Google Scholar]
- Wang, L.; Li, P.; Wu, Z.; Yan, J.; Wang, M.; Ding, Y. Reduction of nitroarenes to aromatic amines with nanosized activated metallic iron powder in water. Synthesis 2003, 13, 2001–2004. [Google Scholar] [CrossRef]
- Whittaker, A.G.; Mingos, D.M.P. The application of microwave heating to chemical syntheses. J. Microw. Power Electromagn. Energy 1994, 29, 195–219. [Google Scholar] [CrossRef]
- Hemmerich, P.; Sigwart, C. Cu(CH3CN)2+, ein Mittel zum Studium homogener Reaktionen des einwertigen Kupfers in wässriger Lösung. Experientia 1963, 19, 488–489. [Google Scholar] [CrossRef]
- Roy, S.; Mondal, T.K.; Mitra, P.; Torres, E.L.; Sinha, C. Synthesis, structure, spectroscopic properties, electrochemistry, and DFT correlative studies of N-[(2-pyridyl) methyliden]-6-coumarin complexes of Cu (I) and Ag (I). Polyhedron 2011, 30, 913–922. [Google Scholar] [CrossRef]
- Datta, D.; Chakravorty, A. Bis (2-(phenylazo) pyridine) copper (I) and-copper (II): Ligand. pi. acidity and high formal potential of the copper (II)-copper (I) couple. Inorg. Chem. 1983, 22, 1085–1090. [Google Scholar] [CrossRef]
- Martínez, N.P.; Isaacs, M.; Oliver, A.G.; Ferraudi, G.; Lappin, A.G.; Guerrero, J. Effects of non-covalent interactions on the electronic and electrochemical properties of Cu (i) biquinoline complexes. Dalton Trans. 2018, 47, 13171–13179. [Google Scholar] [CrossRef] [PubMed]
- Ambundo, E.A.; Deydier, M.V.; Grall, A.J.; Aguera-Vega, N.; Dressel, L.T.; Cooper, T.H.; Rorabacher, D.B. Influence of coordination geometry upon copper (II/I) redox potentials. Physical parameters for twelve copper tripodal ligand complexes. Inorg. Chem. 1999, 38, 4233–4242. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Galkin, A.; Fallarero, A.; Vuorela, P.M. Coumarins permeability in Caco-2 cell model. J. Pharm. Pharmacol. 2009, 61, 177–184. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Iqbal, M.S.; Aftab, S.K. Design, synthesis, characterization and antibacterial properties of copper (II) complexes with chromone-derived compounds. Appl. Organomet. Chem. 2010, 24, 47–56. [Google Scholar] [CrossRef]
- Geweely, N.S. Novel inhibition of some pathogenic fungal and bacterial species by new synthetic phytochemical coumarin derivatives. Ann. Microbiol. 2009, 59, 359–368. [Google Scholar] [CrossRef]
- Zhao, X.; Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 2014, 21, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clearwater, S.J.; Farag, A.M.; Meyer, J.S. Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2002, 132, 269–313. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dash, S.K.; Tripathy, S.; Das, B.; Mandal, D.; Pramanik, P.; Roy, S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem. Biol. Interact. 2015, 226, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Park, J.H.; Peters, T.M.; Thorne, P.S. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol. in Vitr. 2015, 29, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, G.M.; Tawfeeq, A.T.; Jaaffer, M.D. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol. Prog. 2018, 34, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Fujiwara, S.; Usui, T.; Suginaka, H. Simple method for measuring the antibiotic concentration required to kill adherent bacteria. Chemotherapy 1992, 38, 286–290. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Flavobacterium psychrophilum 10094 | CHSE-214 | SHK-1 | RT-GUT | |||
---|---|---|---|---|---|---|
Compounds | IC50 (bacterial) µg/mL | MIC µg/mL | MBC µg/mL | IC50 (cellular) µg/mL | IC50 (cellular) µg/mL | IC50 (cellular) µg/mL |
Coumarin | 160.0 ± 25.5a | 512 | >512 | >512 | >512 | >512 |
[Cu(CH3CN)4]ClO4 | 10.4 ± 0.7 b | 64 | 64 | 59.4 ± 4.1 a | 159 ± 44.6 a | 233.9 ± 19.5 a |
[Cu(NN1)2]ClO4 | 16.1 ± 0.9 c | 32 | 32 | 29.1 ± 1.4 b | 30.8 ± 1.3 b | 53.0 ± 3.1 b |
Copper (I) Complex [Cu(NN1)2]ClO4 | Precursor Salt [Cu(CH3CN)4]ClO4 | |||
---|---|---|---|---|
Amount Total (µg) | Amount Cu (µg) | Amount Total (µg) | Amount Cu (µg) | |
IC50 | 16.1 | 1.3 | 10.4 | 2.0 |
MIC | 32 | 2.7 | 64 | 12.5 |
MBC | 32 | 2.7 | 64 | 12.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldabaldetrecu, M.; Parra, M.; Soto, S.; Arce, P.; Tello, M.; Guerrero, J.; Modak, B. New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium psychrophilum. Molecules 2020, 25, 3183. https://doi.org/10.3390/molecules25143183
Aldabaldetrecu M, Parra M, Soto S, Arce P, Tello M, Guerrero J, Modak B. New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium psychrophilum. Molecules. 2020; 25(14):3183. https://doi.org/10.3390/molecules25143183
Chicago/Turabian StyleAldabaldetrecu, Maialen, Mick Parra, Sarita Soto, Pablo Arce, Mario Tello, Juan Guerrero, and Brenda Modak. 2020. "New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium psychrophilum" Molecules 25, no. 14: 3183. https://doi.org/10.3390/molecules25143183
APA StyleAldabaldetrecu, M., Parra, M., Soto, S., Arce, P., Tello, M., Guerrero, J., & Modak, B. (2020). New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium psychrophilum. Molecules, 25(14), 3183. https://doi.org/10.3390/molecules25143183