A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles
Abstract
:1. Introduction
2. Antioxidant Activity
2.1. Oxidative Stress
2.2. Antioxidants
3. Antioxidant Activity Determination Methods
3.1. Spectrometric Methods
3.2. Electrochemical Methods
3.3. Chromatographic Methods
3.4. Biosensors Method
3.5. Nanotechnological Methods
4. Silver Nanoparticles and Antioxidant Activity Properties
4.1. AgNPs Synthesis
4.1.1. Physical Methods
4.1.2. Chemical Methods
4.1.3. Biological Methods
4.2. AgNPs Antioxidant Properties
5. Conclusions
Funding
Conflicts of Interest
References
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusant. Biosci. 2015, 7, 15–19. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2014, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422. [Google Scholar] [CrossRef]
- Hwang, I.; Hwang, J.H.; Choi, H.; Kim, K.-J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Jiang, X.; Welch, C.; Croley, T.R.; Wong, T.; Chen, C.; Fan, S.; Chong, Y.; Li, R.; Ge, C.; et al. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. Appl. Mater. Interfaces 2018, 10, 8443–8450. [Google Scholar] [CrossRef]
- Jacob, S.J.P.; Finub, J.S.; Narayanan, A. Biointerfaces synthesis of silver nanoparticles using piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf. B Biointerfaces 2012, 91, 212–214. [Google Scholar] [CrossRef]
- Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.-S.; Guofang, C.; Chen, Z. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazem, A.; Mansoori, G.A. Diagnostic methods and therapeutic agents. J. Alzheimer’s Dis. 2008, 13, 199–223. [Google Scholar] [CrossRef] [Green Version]
- Foldbjerg, R.; Anh, D.; Herman, D. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 2011, 85, 743–750. [Google Scholar] [CrossRef]
- Lee, H.A.; Castro-Aceituno, V.; Abbai, R.; Soo, S.; Kim, Y.; Simu, S.Y.; Yang, D.C.; Lee, H.A.; Yang, D.C. Rhizome of anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines. Artif. Cellsnanomed. Biotechnol. 2018, 46 (Suppl. 2), 285–294. [Google Scholar] [CrossRef]
- Azeez, L.; Lateef, A.; Adebisi, S.A. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl. Nanosci. 2017, 7, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, H.; Xu, C.; Gu, L. Food Hydrocolloids A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll. 2015, 43, 153–164. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoʇlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Greguška, O. Kyslíkové radikály, oxid dusnatý a antioxidačný systém v kĺboch postihnutých zápalom. Rheumatologia 1997, 11, 161–166. [Google Scholar]
- Hayyan, M.; Hashim, M.A.; Alnashef, I.M. Superoxide Ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durackova, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar]
- Su, J.; Groves, J.T. Mechanisms of peroxynitrite interactions with heme proteins. Inorg. Chem. 2010, 49, 6317–6329. [Google Scholar] [CrossRef] [Green Version]
- Fridovich, I. The biology of oxygen radicals. Science 1978, 201, 875–880. [Google Scholar] [CrossRef]
- Förstermann, U. Nitric oxide and oxidative stress in vascular disease. Eur. J. Physiol. 2010, 459, 923–939. [Google Scholar] [CrossRef]
- Voetsch, B.; Jin, R.C.; Loscalzo, J. Nitric oxide insufficiency and atherothrombosis. Histochem. Cell Biol. 2004, 122, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Kaysen, G.A.; Eiserich, J.P. The role of oxidative stress – Altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. 2004, 15, 538–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.I.; Hmmer, A.F.R.; Bigelow, D.J.; Schoneich, C. The Oxidative Inactivation of sarcoplasmic reticulum Ca2’—ATPase by peroxynitrite. Free Radic. Res. 1996, 24, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaniendra, A.; Babu, D. Free Radicals: Properties, sources, targets, and their implication in various diseases. Ind J Clin. Biochem 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazem, A.; Mansoori, G.A. Nanotechnology solutions for alzheimer ’ s disease: Advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimer’s Dis. 2020, 13, 199–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffari, S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid. Redox Signaming 2008, 10, 1923–1940. [Google Scholar] [CrossRef] [Green Version]
- Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu Rev Pharm. Toxicol 2004, 44, 239–267. [Google Scholar] [CrossRef]
- Katta, R.; Brown, D.N. Diet and skin cancer: The potential role of dietary antioxidants in nonmelanoma skin cancer prevention. J. Ski. Cancer 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dvor, M.; Igor, S. Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): Modulation by a polyphenolic extract from pine bark. Nutr. Neurosci. 2007, 10, 151–157. [Google Scholar] [CrossRef]
- Bitanihirwe, B.K.Y.; Woo, T.W. Neuroscience and Biobehavioral Reviews Oxidative stress in schizophrenia: An integrated approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [Green Version]
- Limbach, L.K.; Wick, P.; Manser, P.; Grass, R.N. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci.Technol. 2007, 41, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Sikder, T.; Rahman, M.; Ullah, A.K.M.A.; Fatima, K.; Hossain, B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Jing, M.; Ah, K.; Kyung, I.; Sun, H.; Kim, S.; Yun, J.; Choi, J.; Won, J. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011, 201, 92–100. [Google Scholar] [CrossRef]
- Babior, B.M. Phagocytes and oxidative stress. Physiol. Med. 2000, 109, 33–44. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Raadicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Cillard, J.; Cillard, P.; Cormier, M. Effect of experimental factors on the prooxidant behavior of α-tocopherol. J. Am. Oil Chem. Soc. 1980, 57, 255–261. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev. 1997, 55, 44–49. [Google Scholar] [CrossRef]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Prior, R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.; Chung, S.; Song, W.O.N.O.; Fernandez, M.L.U.Z.; Bruno, R.S.; Koo, S.I.; Chun, O.C.K.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.; Chung, S.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2011, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef]
- Agbor, G.; Vinson, J. Folin-ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet. 2014, 3, 1–19. [Google Scholar] [CrossRef]
- Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodriguez-Mellado, J.M. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012, 17, 5126–5138. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficienc y of polyphenols. J Sci Food Agric 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-evans, C.A. Antioxidant activities of carotenes and xanthophylls. Febs Lett. 1996, 384, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Henriquez, C.; Aliaga, C.; Lissi, E. Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures. Int. J. Chem. Kinet. 2002, 34, 659–665. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. Rev. 2020, 21, 1131. [Google Scholar] [CrossRef] [Green Version]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Çekiç, S.D.; Avan, A.N.; Uzunboy, S.; Apak, R. A colourimetric sensor for the simultaneous determination of oxidative status and antioxidant activity on the same membrane: N,N-dimethyl-p-phenylene diamine (DMPD) on Nafion. Anal. Chim. Acta 2015, 865, 60–70. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteau, V. On tyrosine and tryptophane in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 44, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Spickett, C.M.; Wiswedel, I.; Siems, W.; Zarkovic, K.; Zarkovic, N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic. Res. 2010, 44, 1172–1202. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, S.; Nagai, K.; Fujii, Y.; Ouchi, A.; Mukai, K. Development of a new free radical absorption capacity assay method for antioxidants: Aroxyl radical absorption capacity (ARAC). J. Agric. Food Chem. 2013, 61, 10054–10062. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Bertelsen, G.; Nissen, L.R.; Gardner, P.T.; Heinonen, M.I.; Hopia, A.; Lambelet, T.H.P.; Mcphail, D.; Skibsted, L.H.; Tijburg, L. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur. Food Res. Technol. 2001, 212, 319–328. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Cimpeanu, C.; Predoi, G. Electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chem. 2015, 13, 824–856. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.K.F.; Tormin, T.F.; Sousa, R.M.F.; De Oliveira, A.; De Morais, S.A.L.; Richter, E.M.; Munoz, R.A.A. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chem. 2016, 192, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milardović, S.; Ivekovic, D.; Grabaric, B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 2006, 68, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhao, C.; Guo, W.; Kang, X.; Zhang, J. Theoretical and experimental study of the biamperometry for irreversible redox couple in flow system. Anal. Chim. Acta 2002, 470, 229–240. [Google Scholar] [CrossRef]
- Yan, R.; Cao, Y.; Yang, B. HPLC-DPPH screening method for evaluation of antioxidant compounds extracted from semen oroxyli. Molecules 2014, 19, 4409–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedan, V.; Fischer, N.; Rohn, S. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. FRIN 2016, 89, 890–900. [Google Scholar] [CrossRef] [Green Version]
- Stalmach, A.; Mullen, W.; Nagai, C.; Crozier, A. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Braz. J. Plant Physiol. 2006, 18, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Mello, L.D.; Kubota, L.T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 2002, 77, 237–256. [Google Scholar] [CrossRef]
- Mello, L.D.; Kubota, L.T. Biosensors as a tool for the antioxidant status evaluation. Talanta 2007, 72, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Sherry, L.J.; Chang, S.-H.H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038. [Google Scholar] [CrossRef]
- Amendola, V.; Bakr, O.M.; Stellacci, F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 2010, 5, 85–97. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; VanDuyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 8–10. [Google Scholar] [CrossRef]
- Vilela, D.; González, M.C.; Escarpa, A. Nanoparticles as analytical tools for in-vitro antioxidant-capacity assessment and beyond. Trends Anal. Chem. 2015, 64, 1–16. [Google Scholar] [CrossRef]
- Baláž, M.; Bedlovičová, Z.; Kováčová, M.; Balážová, Ľ.; Salayová, A. Green and bio-mechanochemical approach to silver nanoparticles synthesis, characterization and antibacterial potential Matej. In Nanostructures for Antimicrobial and Antibio lm Applications; Prasad, R., Siddhardha, B., Dyavaiah, M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 145–183. ISBN 9783030403362. [Google Scholar]
- Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002, 78, 583–588. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Gurav, A.S.; Kodas, T.T.; Wang, L.-M.; Kauppinen, E.I.; Joutsensaari, J. Generation of nanometer-size fullerene particles via vapor condensation. Chem. Phys. Lett. 1994, 218, 304–308. [Google Scholar] [CrossRef]
- Pluym, T.C.; Powell, Q.H.; Gurav, A.S.; Ward, T.L.; Kodas, T.T.; Wang, L.M.; Glicksman, H.D. Solid silver particle production by spray pyrolysis. J. Aerosol Sci. 1993, 24, 383–392. [Google Scholar] [CrossRef]
- Lee, D.K.; Kang, Y.S. Synthesis of silver nanocrystallites by a new thermal decomposition method and their characterization. Etri J. 2004, 26, 252–256. [Google Scholar] [CrossRef]
- Baláž, M.; Daneu, N.; Balážová, Ľ.; Dutková, E.; Tkáčiková, Ľ.; Briančin, J.; Vargová, M.; Balážová, M.; Zorkovská, A.; Baláž, P. Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv. Powder Technol. 2017, 28, 3307–3312. [Google Scholar] [CrossRef]
- Hernández, J.G.; Halasz, I.; Crawford, D.E.; Krupička, M.; Baláž, M.; André, V.; Vella-Zarb, L.; Niidu, A.; García, F.; Maini, L.; et al. European research in focus: Mechanochemistry for sustainable industry (COST Action MechSustInd). Eur. J. Org. Chem. 2020, 8–9. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovicová, M.; Baláž, M.; Billik, P.; Zara, C.Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; García, F. Main group mechanochemistry: From curiosity to established protocols. Chem. Soc. Rev. 2019, 48, 2274–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bychkov, A.; Podgorbunskikh, E.; Bychkova, E.; Lomovsky, O. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnol. Bioeng. 2019, 116, 1231–1244. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A force of synthesis. Acs Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz. 2020, 7, 1457–1473. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodriguez-Pardón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural. Chem. Soc. Rev. 2020. [Google Scholar] [CrossRef]
- Evanoff, D.D.; Chumanov, G. Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 2004, 108, 13957–13962. [Google Scholar] [CrossRef]
- Chen, S.-F.; Zhang, H. Aggregation kinetics of nanosilver in different water conditions. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035006. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Ugarte, D.; Zanchet, D.; Zarbin, A.J.G. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Colloid Interface Sci. 2005, 292, 429–435. [Google Scholar] [CrossRef]
- Sun, Y.G.; Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. J. Sci. 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Marchiol, L.; Mattiello, A.; Pošćić, F.; Giordano, C.; Musetti, R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014, 9, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baláž, M.; Balážová, Ľ.; Daneu, N.; Dutková, E.; Balážová, M.; Bujňáková, Z.; Shpotyuk, Y. Plant-Mediated Synthesis of silver nanoparticles and their stabilization by wet stirred media milling. Nanoscale Res. Lett. 2017, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [Google Scholar] [CrossRef]
- Pallavicini, P.; Arciola, C.R.; Bertoglio, F.; Curtosi, S.; Dacarro, G.; D’Agostino, A.; Ferrari, F.; Merli, D.; Milanese, C.; Rossi, S.; et al. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J. Colloid Interface Sci. 2017, 498, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef]
- Al-Bahrani, R.; Raman, J.; Lakshmanan, H.; Hassan, A.A.; Sabaratnam, V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater. Lett. 2017, 186, 21–25. [Google Scholar] [CrossRef]
- Gurunathan, S.; Raman, J.; Abd Malek, S.N.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2013, 8, 4399–4413. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Deshpande, R.; Ganachari, S.V.; Huh, D.S.; Venkataraman, A. Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg. Chem. Appl. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saifuddin, N.; Wong, C.W.; Yasumira, a.a.N.; Nur Yasumira, A.A. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem. 2009, 6, 61–70. [Google Scholar] [CrossRef]
- Shaligram, N.S.; Bule, M.; Bhambure, R.; Singhal, R.S.; Singh, S.K.; Szakacs, G.; Pandey, A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009, 44, 939–943. [Google Scholar] [CrossRef]
- Nanda, A.; Saravanan, M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 452–456. [Google Scholar] [CrossRef]
- Binupriya, A.R.; Sathishkumar, M.; Yun, S. Il Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of aspergillus oryzae var. viridis and its bactericidal activity toward staphylococcus aureus KCCM 12256. Ind. Eng. Chem. Res. 2010, 49, 852–858. [Google Scholar] [CrossRef]
- Khamhaengpol, A.; Siri, S. Green synthesis of silver nanoparticles using tissue extract of weaver ant larvae. Mater. Lett. 2017, 192, 72–75. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int. J. Met. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Thanighaiarassu, R.R.; Nambikkairaj, B.; Devika, R.; Raghunathan, D.; Manivannan, N.; Sivamani, P.; Nadu, T. Biological greenish nanosynthesis of silver nanoparticle using plant leaf essential oil compound farnesol and their antifungal activity against human pathogenic fungi. Worldj. Pharm. Res. 2015, 4, 1706–1717. [Google Scholar]
- Raveendran, P.; Fu, J.; Wallen, S.L. A simple and ‘green’ method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006, 8, 34–38. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Nachane, R.P.; Balasubramanya, R.H.; Varadarajan, P.V. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 2006, 341, 2012–2018. [Google Scholar] [CrossRef] [PubMed]
- Konował, E.; Sybis, M.; Modrzejewska-Sikorska, A.; Milczarek, G. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar. Int. J. Biol. Macromol. 2017, 104, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Pivec, T.; Hribernik, S.; Kolar, M.; Kleinschek, K.S. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydr. Polym. 2017, 163, 92–100. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361. [Google Scholar] [CrossRef]
- Deljou, A.; Goudarzi, S. Green extracellular synthesis of the silver nanoparticles using thermophilic bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran J Biotech 2016, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Du, J.; Singh, P.; Hoo, T. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application. J. Pharm. Anal. 2018, 8, 258–264. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, S.; Ahmad, N.; Ghosh, A.; Sinha, P. Synthesis of AgNPs by bacillus cereus bacteria and their antimicrobial potential. J. Biomater. Nanotechnol. 2011, 2, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Gudikandula, K.; Vadapally, P.; Charya, M.A.S. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano 2017, 2, 64–78. [Google Scholar] [CrossRef]
- Xixi, Z.; Liangfu, Z.; Rajoka, R.; Shahid, M.; Lu, Y.; Chunmei, J.; Dongyan, S.; Jing, Z.; Junling, S.; Qingsheng, H.; et al. Fungal silver nanoparticles: Synthesis, application and challenges. Crit. Rev. Biotechnol. 2017, 38, 1–19. [Google Scholar] [CrossRef]
- Ahn, E.-Y.; Jin, H.; Park, Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater. Sci. Eng. C 2019, 101, 204–216. [Google Scholar] [CrossRef]
- Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozfari, M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018, 13, 8013–8024. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A.; Welt, B.A.; Ocsoy, I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater. Lett. 2016, 179, 20–23. [Google Scholar] [CrossRef]
- Öztürk, F.; Ço, S.; Duman, F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Mater. Sci. Eng. C J. 2020, 107, 1–11. [Google Scholar] [CrossRef]
- Elemike, E.E.; Fayemi, O.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ebenso, E.E. Silver nanoparticles mediated by Costus afer leaf electrochemical properties. Molecules 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Ijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cellsnanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnasamy, G.; Chandrasekharan, S.; Bhatnagar, S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int. J. Nanomed. 2019, 14, 9823–9836. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Shahid, S.; Lee, C. Green synthesis of gold and silver nanoparticles using leaf extract of clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules 2020, 10, 835. [Google Scholar] [CrossRef]
- Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of rhododendron dauricum. Nano Biomed Eng 2012, 4, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Arora, S.; Danish, M. Plant based synthesis of silver nanoparticles from ougeinia oojeinensis leaves extract and their membrane stabilizing, antioxidant and antimicrobial activities. Mater. Today Proc. 2019, 17, 313–320. [Google Scholar] [CrossRef]
- Phull, A.; Abbas, Q.; Ali, A.; Raza, H.; Ja, S.; Zia, M.; Haq, I. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Futur. J. Pharm. Sci. 2016, 2, 31–36. [Google Scholar] [CrossRef]
- Salari, S.; Esmaeilzadeh, S.; Samzadeh-kermani, A.; Yosefzaei, F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract. Iran. J. Pharm. Res. 2019, 18, 430–445. [Google Scholar]
- Priya, R.S.; Geetha, D.; Ramesh, P.S. Ecotoxicology and environmental safety antioxidant activity of chemically synthesized AgNPs and biosynthesized pongamia pinnata leaf extract mediated AgNPs — A comparative study. Ecotoxicol. Environ. Saf. 2016, 134, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Valsalam, S.; Agastian, P.; Valan, M.; Al-dhabi, N.A.; Ghilan, A.M.; Kaviyarasu, K.; Ravindran, B. Biology rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B Biol. 2019, 191, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Khoshnamvand, M.; Huo, C.; Liu, J. Silver nanoparticles synthesized using allium ampeloprasum L. leaf extract: Characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J. Mol. Struct. 2019, 1175, 90–96. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otunola, G.A.; Afolayan, A.J.; Ajayi, E.O.; Odeyemi, S.W. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of allium sativum, zingiber officinale, and capsicum frutescens. Pharm. Mag. 2017, 13, 5201–5208. [Google Scholar] [CrossRef] [Green Version]
- Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. Int. 2018, 25, 10392–10406. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016, 6, 20414. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Pohl, P. Synthesis of biogenic silver nanoparticles ( AgCl-NPs ) using a pulicaria vulgaris gaertn. Aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials 2020, 10, 638. [Google Scholar] [CrossRef] [Green Version]
- Sathiyaseelan, A.; Saravanakumar, K.; Vijaya, A.; Mariadoss, A.; Wang, M. International journal of biological macromolecules biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int. J. Biol. Macromol. 2020, 153, 63–71. [Google Scholar] [CrossRef]
- Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. 2020. [Google Scholar] [CrossRef]
- Selvan, D.A.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B Biol. 2018, 180, 243–252. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Xie, J.; Wu, S.; Wu, Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater. Sci. Eng. C 2018, 86, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Journal, A.I.; Johnson, P.; Krishnan, V.; Loganathan, C.; Govindhan, K.; Raji, V.; Sakayanathan, P.; Vijayan, S.; Palvannan, T. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α -amylase inhibitor. Artif. Cellsnanomed. Biotechnol. 2018, 46, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, H.; Mehmood, A.; Shafique, K.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020, 112, 1–7. [Google Scholar] [CrossRef]
- Mousavi-Khattat, M.; Keyhanfar, M.; Razmjou, A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif. Cellsnanomed. Biotechnol. 2018, 46, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, T.; Sapi, A.; Das, G.; Debnath, T.; Ansari, A. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J. Photochem. Photobiol. B Biol. 2019, 193, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilas, V.; Philip, D.; Mathew, J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater. Sci. Eng. C 2016, 61, 429–436. [Google Scholar] [CrossRef]
- González-ballesteros, N.; Rodríguez-argüelles, M.C.; Prado-lópez, S.; Lastra, M.; Grimaldi, M.; Cavazza, A.; Nasi, L.; Salviati, G. Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Mater. Sci. Eng. C 2019, 97, 498–509. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Wang, M. Microbial Pathogenesis Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb. Pthogenes. 2018, 114, 269–273. [Google Scholar] [CrossRef]
- Shahid, M.; Rajoka, R.; Mahreen, H.; Zhang, H.; Zhao, L.; He, Z. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf. B Biointerfaces 2020, 186, 1–11. [Google Scholar] [CrossRef]
- Sivasankar, P.; Seedevi, P.; Poongodi, S. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr. Polym. 2018, 181, 752–759. [Google Scholar] [CrossRef]
- Gahlawat, G.; Shikha, S.; Chaddha, B.S.; Chaudhuri, S.R.; Mayilraj, S. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb. Cell Fact. 2016, 15, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.K.; Bhaumik, J.; Kumar, S.; Banerjee, U.C. Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 2014, 415, 39–47. [Google Scholar] [CrossRef]
- Alves, T.F.; Chaud, M.V.; Grotto, D.; Jozala, A.F.; Pandit, R.; Rai, M.; Alves, C. Association of silver nanoparticles and curcumin solid dispersion: Antimicrobial and antioxidant properties. Aaps Pharmscitech 2018, 19, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Docea, A.O.; Calina, D.; Buga, A.M.; Zlatian, O.; Popescu, E.L.; Stoica, A.E.; Catalina, A. The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a murine model. Int. J. Mol. Sci. 2020, 21, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, T.; Odunayo, O.; Benjakul, S.; Rujiralai, T. Synthesis and characterization of novel poly (3-aminophenyl boronic acid- co-vinyl alcohol) nanocomposite polymer stabilized silver nanoparticles with antibacterial and antioxidant applications. Colloids Surf. B Biointerfaces 2020, 193, 1–10. [Google Scholar] [CrossRef]
- Bhutto, A.A.; Kalay, Ş.; Sherazi, S.T.H.; Culha, M. Quantitative structure—activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta 2018, 189, 174–181. [Google Scholar] [CrossRef]
- Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V. Colloids and Surfaces B: Biointerfaces A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf. B Biointerfaces 2013, 111, 680–687. [Google Scholar] [CrossRef]
Method | Principle | Final Product Determination |
---|---|---|
Spectrometric | ||
DPPH | Reaction with organic radical | Colorimetry |
ABTS | Reaction with organic radical | Colorimetry |
DMPD | Reaction with organic radical | Colorimetry |
FC | Reaction with Mo6+ and W6+ | Colorimetry |
FRAP | Reaction with Fe3+ | Colorimetry |
ORAC | Reaction with peroxyl radical initiated by AAPH | Fluorescence loss |
HORAC | Reaction with OH radicals generated by Co2+ based Fenton-like systems | Fluorescence loss |
TRAP | Reaction with luminol-derived radicals, generated during the AAPH decomposition | Quench of chemiluminescence |
Lipid peroxidation inhibitory assay | Fenton-like system (Co2+ + H2O2) | Colorimetry |
PFRAP | Potassium ferricyanide reduction | Colorimetry |
CUPRAC | Cu2+ reduction to Cu1+ | Colorimetry |
Fluorimetry | Emission of light by a substance that has absorbed the light or other electromagnetic radiation of a different wavelength | Fluorescence excitation/emission spectra |
Electrochemical | ||
Cyclic voltammetry | The potential of working electrode is varying from initial to final value and back, current intensity is recorded | Measurement of the intensity of cathode or anode peak |
Amperometry | The potential of working electrode is fixed to a reference electrode | Measurement of the intensity currently produced by oxidation or reduction of a sample |
Biamperometry | The reaction of an antioxidant with the oxidized form of a reversible redox couple | Measurement of the current flow between two identical working electrodes |
Chromatographic | ||
High performance liquid chromatography | Separation of compounds in a reaction mixture at a stationary phase in a liquid mobile phase | UV/Vis, MS or fluorescence detection |
Biosensors | Enzyme-based biosensors measuring total phenolic content | Electroanalytical evaluation |
Nanotechnological methods | Reaction of noble metal (Au, Ag) salt with antioxidant compound | Colorimetry |
Silver Nanoparticles Synthesis | |||
---|---|---|---|
Physical Methods | Chemical Methods | Green Synthesis Methods | |
In Vitro Methods | In Vivo Methods | ||
Arc discharge Ball milling Evaporation–condensation Pulsed laser ablation Spray pyrolysis Vapor and gas phase | Electrochemical Microwave assisted Photochemical Reduction Sonochemical | Using algae Using biomolecules Using essential oils Using microorganisms Using mushroom extracts Using plant extracts | Using algae Using microorganisms Using plant Using yeast |
Method of Antioxidant Capacity Measurement | Method of AgNPs Synthesis | Reducing Agent | Precursor | Ref. |
---|---|---|---|---|
DPPH | Biological | Plant extracts of Cratoxylum formosum, Phoebe lanceolata, Scurrula parasitica, Ceratostigma minus, Mucuna birdwoodiana, Myrsine africana and Lindera strychnifolia | 0.25 mM AgNO3 | [123] |
DPPH | Biological | Walnut (Juglans regia) green husk extract | 6 mM AgNO3 | [124] |
DPPH | Biological | Plant extract of Costus afer | 1 mM AgNO3 | [127] |
DPPH | Biological | Plant extract of Indigofera tinctoria | 1 mM AgNO3 | [128] |
DPPH | Biological | Red cabbage (Brassica oleracea var. capitate f. rubra) extract | 5 mM AgNO3 | [125] |
DPPH | Biological | Plant extract of Clerodendrum inerme | 1 mM AgNO3 | [130] |
DPPH | Biological | Plant extract of Rhododendron dauricum | 0.5–5 mM AgNO3 | [131] |
DPPH | Biological | Plant extract of Ougeinia oojeinensis | 1 mM AgNO3 | [132] |
DPPH FC method | Biological | Plant extract of Bergenia ciliata | 0.1% AgNO3 | [133] |
DPPH FRAP | Biological | Plant extract of Prosopis farcta | 1 mM AgNO3 | [134] |
DPPH ABTS •OH Superoxide anion NO | Biological | Plant extract of Pongamia pinnata | 1 mM AgNO3 | [135] |
DPPH ABTS | Biological | Plant extract of Tropaeolum majus | 1 mM AgNO3 | [136] |
DPPH ABTS | Biological | Plant extract of Allium ampeloprasum L. | 1 mM AgNO3 | [137] |
DPPH ABTS NOx | Biological | Peels’ extract of Ipomoea batatas (L.) | 1 mM AgNO3 | [138] |
DPPH ABTS | Biological | Plant extracts of Allium sativum, Zingiber officinale, Capsicum frutescens | 0.1 M AgNO3 | [139] |
DPPH ABTS NOx | Biological | Plant extract of Taraxacum officinale | 1 mM AgNO3 | [140] |
DPPH FRAP | Biological | Plant extract of Teucrium polium | 3 mM AgNO3 | [141] |
DPPH | Biological | Plant extract of Pulicaria vulgaris | 1 mM AgNO3 | [142] |
DPPH | Biological | Plant extract of Gynura procumbens encapsulated with fungal chitosan from Cunninghamella elegans | 1 mM AgNO3 | [143] |
DPPH Reducing power Superoxide anion | Biological | Plant extract of Aesculus hippocastanum | 5 mM AgNO3 | [126] |
DPPH FC Superoxide anion | Biological | Plant extract of Indian belladonna | 1 mM AgNO3 | [144] |
DPPH ABTS | Biological | Plant extract of Melia azedarach | 1 mM AgNO3 | [129] |
DPPH ABTS •OH Superoxide anion H2O2 | Biological | Extract of garlic (Allium sativum), green tea (Camellia sinensis), turmeric (Curcuma longa) | 25 mM AgNO3 | [145] |
DPPH ABTS | Biological | Plant extract of Psidium guajava L. | 1 mM AgNO3 | [146] |
DPPH FRAP | Biological | Plant extract of Bauhinia variegata | 1 mM AgNO3 | [147] |
DPPH | Biological | Plant extract of Achillea millefolium | 1 mM AgNO3 | [148] |
DPPH | Biological | Plant extract of Datura stramonium | 1 mM AgNO3 | [149] |
DPPH ABTS | Biological | Corn (Zea mays) flour extract | 1 mM AgNO3 | [150] |
Superoxide H2O2 NO DPPH •OH | Biological | Essential oil of Coleus aromaticus | 0.214 mM AgNO3 | [151] |
DPPH FC | Biological | Macroalgae Ulva lactuca L. | 5 mM AgNO3 | [152] |
DPPH | Biological | Bacterial strain Trichoderma atroviride | 5 and 10 mM AgNO3 | [153] |
DPPH H2O2 NO | Biological | Exopolysaccharide from probiotic Lactobacillus brevis | 2 mM AgNO3 | [154] |
DPPH H2O2 NO Ferric reducing power assay | Biological | Exopolysaccharide from Streptomyces violaceus | 3 mM AgNO3 | [155] |
DPPH | Biological | Ochrobactrum rhizosphaerae | 9 mM AgNO3 | [156] |
DPPH ABTS MTT FC | Biological | Syzygium cumini fruit extract | 0.5–5 mM AgNO3 | [157] |
DPPH | Chemical | Sodium citrate | 45 mg AgNO3 Stabilized by PVP or PVA | [158] |
TAC TBARS PCARB GSH | Chemical | EG EG/PVP | AgNO3 | [159] |
DPPH ABTS H2O2 | Chemical | PABA-PVA | 0.1 M AgNO3NaOH | [160] |
DPPH | Chemical | PLA/PEG | 1 mM AgNO3 | [149] |
DPPH ABTS | Chemical | Phenolic compounds | AgNO3 Stabilized by PVP NaOH | [161] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules 2020, 25, 3191. https://doi.org/10.3390/molecules25143191
Bedlovičová Z, Strapáč I, Baláž M, Salayová A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules. 2020; 25(14):3191. https://doi.org/10.3390/molecules25143191
Chicago/Turabian StyleBedlovičová, Zdenka, Imrich Strapáč, Matej Baláž, and Aneta Salayová. 2020. "A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles" Molecules 25, no. 14: 3191. https://doi.org/10.3390/molecules25143191
APA StyleBedlovičová, Z., Strapáč, I., Baláž, M., & Salayová, A. (2020). A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules, 25(14), 3191. https://doi.org/10.3390/molecules25143191