High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption
2.2. Release
3. Materials and Methods
3.1. Materials
3.2. Sorption Studies
3.3. Dispersive-SPE Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Charuaud, L.; Jarde, E.; Jaffrezic, A.; Thomas, M.; le Bot, B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. J. Hazard. Mater. 2019, 361, 169–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596, 303–320. [Google Scholar] [CrossRef] [PubMed]
- McCallum, E.S.; Krutzelmann, E.; Brodin, T.; Fick, J.; Sundelin, A.; Balshine, S. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. Sci. Total Environ. 2017, 605, 578–588. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Jiang, R.; Zhou, R.; Zhang, P.; Sun, Y.; Nkoom, M. Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China. Environ. Pollut. 2019, 255, 113–132. [Google Scholar] [CrossRef]
- Furlong, E.T.; Batt, A.L.; Glassmeyer, S.T.; Noriega, M.C.; Kolpin, D.W.; Mash, H.; Schenck, K.M. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals. Sci. Total Environ. 2017, 579, 1629–1642. [Google Scholar] [CrossRef]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef]
- Comber, S.; Gardner, M.; Sörme, P.; Leverett, D.; Ellord, B. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? Sci. Total Environ. 2018, 613, 538–547. [Google Scholar] [CrossRef]
- Patrolecco, L.; Capri, S.; Ademollo, N. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ. Sci. Pollut. Res. 2015, 22, 5864–5876. [Google Scholar] [CrossRef]
- Carmalin, S.A.; Eder, C.L. Removal of emerging contaminants from the environment by adsorption. Ecotox. Environ. Safe 2018, 150, 1–17. [Google Scholar]
- Patiño, Y.; Díaz, E.; Ordóñez, S. Pre-concentration of nalidixic acid through adsorption–desorption cycles: Adsorbent selection and modelling. Chem. Eng. J. 2016, 283, 486–494. [Google Scholar] [CrossRef]
- Naing, N.N.; Li, S.F.Y.; Lee, H.K. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography. J. Chromatogr. A 2016, 1427, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Martucci, A.; Pasti, L.; Marchetti, N.; Cavazzini, A.; Dondi, F.; Alberti, A. Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Micropor. Mesopor. Mat. 2012, 148, 174–183. [Google Scholar] [CrossRef]
- Pasti, L.; Sarti, E.; Cavazzini, A.; Marchetti, N.; Dondi, F.; Martucci, A. Factors affecting drug adsorption on beta zeolites. J. Sep. Sci. 2013, 36, 1604–1611. [Google Scholar] [CrossRef]
- Costa, A.A.; Wilson, W.B.; Wang, H.; Campiglia, A.D.; Dias, J.A.; Dias, S.C.L. Comparison of BEA, USY and ZSM-5 for the quantitative extraction of polycyclic aromatic hydrocarbons from water samples. Micropor. Mesopor. Mat. 2012, 149, 186–192. [Google Scholar] [CrossRef]
- Wilson, W.B.; Costa, A.A.; Wang, H.; Campiglia, A.D.; Dias, J.A.; Dias, S.C.L. Pre-concentration of water samples with BEA zeolite for the direct determination of polycyclic aromatic hydrocarbons with laser-excited time-resolved Shpol’skii spectroscopy. Microchem. J. 2013, 110, 246–255. [Google Scholar] [CrossRef]
- Sarti, E.; Chenet, T.; Pasti, L.; Cavazzini, A.; Rodeghero, E.; Martucci, A. Effect of silica alumina ratio and thermal treatment of Beta zeolites on the adsorption of toluene from aqueous solutions. Minerals 2017, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Martucci, A.; Braschi, I.; Bisio, C.; Sarti, E.; Rodeghero, E.; Bagatin, R.; Pasti, L. Influence of water on the retention of methyl tertiary-butyl ether by high silica ZSM-5 and Y zeolites: A multidisciplinary study on the adsorption from liquid and gas phase. RSC Adv. 2015, 5, 86997–87006. [Google Scholar] [CrossRef]
- Pasti, L.; Rodeghero, E.; Beltrami, G.; Ardit, M.; Sarti, E.; Chenet, T.; Stevanin, C.; Martucci, A. Insights into adsorption of chlorobenzene in high silica MFI and FAU zeolites gained from chromatographic and diffractometric techniques. Minerals 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, I.P.; Chisvert, A.; Canals, A. Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography–mass spectrometry for UV-filter determination in water samples. J. Chromatogr. A 2011, 1218, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A.J.; Zhao, H.T.; Zhang, L.W.; Wang, Z.Y.; Xu, R.B.; Li, W.J. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid–liquid micro-extraction by high performance liquid chromatography. Food Chem. 2012, 134, 3–1691. [Google Scholar] [CrossRef]
- Tsai, W.H.; Huang, T.C.; Huang, J.J.; Hsue, Y.H.; Chuang, H.Y. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A. 2009, 1216, 12–2263. [Google Scholar] [CrossRef] [PubMed]
- Rodeghero, E.; Martucci, A.; Cruciani, G.; Bagatin, R.; Sarti, E.; Bosi, V.; Pasti, L. Kinetics and dynamic behaviour of toluene desorption from ZSM-5using in situ high-temperature synchrotron powder X-ray diffraction and chromatographic techniques. Catal. Today 2016, 277, 118–125. [Google Scholar] [CrossRef]
- Rodeghero, E.; Pasti, L.; Sarti, E.; Cruciani, G.; Bagatin, R.; Martucci, A. Temperature-induced desorption of methyl tert-butyl ether confined on ZSM-5: An in situ synchrotron XRD powder diffraction study. Minerals 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaard, G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Fernández-Perales, M.; Sánchez-Polo, M.; Rozalen, M.; López-Ramón, M.V.; Mota, A.J.; Rivera-Utrilla, J. Degradation of the diuretic hydrochlorothiazide by UV/Solar radiation assisted oxidation processes. J. Environ. Manag. 2020, 257, 109973. [Google Scholar] [CrossRef]
- Čejka, J.; van Bekkum, H.; Corma, A.; Schüth, F. Introduction to Zeolite Science and Practice, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 168, pp. 50–51. [Google Scholar]
- Hartig, D.; Schwindt, N.; Scholl, S. Using the local adsorption equilibrium distribution based on a Langmuir type adsorption model to investigate liquid phase adsorption of sugars on zeolite BEA. Adsorption 2017, 23, 433–441. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Domínguez-Vargas, J.R.; Olivares-Marín, F.J.; Beltrán de Heredia, J. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J. Hazard. Mater. 2010, 177, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Haro, N.K.; del Vecchio, P.; Marcilio, N.R.; Féris, L.A. Removal of atenolol by adsorption – Study of kinetics and equilibrium. J. Clean. Prod. 2017, 154, 214–219. [Google Scholar] [CrossRef]
- Fröhlich, A.C.; Foletto, E.L.; Dotto, G.L. Preparation and characterization of NiFe2 O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod. 2019, 229, 828–837. [Google Scholar] [CrossRef]
- Arya, V.; Philip, L. Adsorption of pharmaceuticals in water using Fe3 O4 coated polymer clay composite. Micropor. Mesopor. Mat. 2016, 232, 273–280. [Google Scholar] [CrossRef]
- Wesolowski, M.; Rojek, B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J. Therm. Anal. Calorim. 2013, 113, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Silva Pires, M.A.; Souza dos Santos, R.A.; Sinisterra, R.D. Pharmaceutical composition of hydrochlorothiazide: β-cyclodextrin: Preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation. Molecules 2011, 16, 4482–4499. [Google Scholar] [CrossRef] [Green Version]
- Tiţa, B.; Fuliaş, A.; Bandur, G.; Marian, E.; Tiţa, D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J. Pharm. Biomed. 2011, 56, 221–227. [Google Scholar] [CrossRef]
- Braschi, I.; Gatti, G.; Bisio, C.; Berlier, G.; Sacchetto, V.; Cossi, M.; Marchese, L. The role of silanols in the interactions between methyl tert-butyl ether and high-silica Faujasite Y: An infrared spectroscopy and computational model study. J. Phys. Chem. C 2012, 116, 6943–6952. [Google Scholar] [CrossRef]
- Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N. pH-Dependent adsorption of sulfa drugs on high silica zeolite: Modeling and kinetic study. Desalination 2011, 275, 237–242. [Google Scholar] [CrossRef]
- Kuzniatsova, T.; Kim, Y.; Shqau, K.; Dutta, P.K.; Verweij, H. Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Micropor. Mesopor. Mat. 2007, 103, 102–107. [Google Scholar] [CrossRef]
- Lee, E.F.T.; Rees, L.V.C. Dealumination of sodium Y zeolite with hydrochloric acid. J. Chem. Soc. Faraday Trans. 1987, 83, 1531–1537. [Google Scholar] [CrossRef]
- Schönherr, D.; Wollatz, U.; Haznar-Garbacz, D.; Hanke, U.; Box, K.J.; Taylor, R.; Ruiz, R.; Beato, S.; Becker, D.; Weitschies, W. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by Sirius T3. Eur. J. Pharm. Biopharm. 2015, 92, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mäki-Arvela, P.; Aho, A.; Vajglova, Z.; Gun’ko, V.M.; Heinmaa, I.; Kumar, N.; Murzin, D.Y. Zeta potential of beta zeolites: Influence of structure, acidity, pH, temperature and concentration. Molecules 2018, 23, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosi, V.; Sarti, E.; Navacchia, M.L.; Perrone, D.; Pasti, L.; Cavazzini, A.; Capobianco, M.L. Gold-nanoparticle extractioned reversed-electrode-polarity stacking mode combined to enhance capillary electrophoresis sensitivity for conjugated nucleosides and oligonucleotides containing thioether linkers. Anal. Bioanal. Chem. 2015, 407, 5405–5415. [Google Scholar] [CrossRef]
- Santos, J.L.; Aparicio, I.; Alonso, E.; Callejón, M. Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal. Chim. Acta 2005, 550, 116–122. [Google Scholar] [CrossRef]
- Gantiva, M.; Martínez, F. Thermodynamic analysis of the solubility of ketoprofen in some propylene glycol + water cosolvent mixtures. Fluid Phase Equilib. 2010, 293, 242–250. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef]
- Kadam, Y.; Yerramilli, U.; Bahadur, A.; Bahadur, P. Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloid. Surface B 2011, 83, 49–57. [Google Scholar] [CrossRef]
- Küster, A.; Alder, A.C.; Escher, B.I.K.; Duis, K.; Fenner, K.; Garric, J.; Hutchinson, T.H.; Lapen, D.R.; Péry, A.; Rö#xF6;mbke, J. Environmental risk assessment of human pharmaceuticals in the European Union: A case study with the β-blocker atenolol. Integr. Environ. Assess. Manag. 2010, 6, 514–523. [Google Scholar]
Sample Availability: Samples of the zeolites are available from the authors. |
Drug-Zeolite | b (L mg −1) | qS (mg g −1) | R2 |
---|---|---|---|
KTP–Y200 | 0.91 (0.76; 1.1) | 208 (202; 214) | 0.9887 |
HCT–Y200 | 0.037 (0.029; 0.044) | 322 (302; 342) | 0.9856 |
ATN–Y200 | 0.11 (0.082; 0.14) | 183 (171; 195) | 0.9737 |
KTP–Y30 | 0.052 (0.035; 0.069) | 173 (148; 197) | 0.9756 |
HCT–Y30 | 0.022 (0.018; 0.026) | 121 (114; 128) | 0.9957 |
ATN–Y30 | 0.084 (0.058; 0.11) | 240 (223; 257) | 0.9727 |
Y200 | Y200-KTP | Y200-ATN | |
---|---|---|---|
Crystallite size (Å) | 668.5 | 621.5 | 563.4 |
a = b = c (Å) | 24.259(1) | 24.255(1) | 24.159(1) |
V (Å3) | 14,277.1(1) | 14,269.1(1) | 14,101.5(1) |
O4-O4 (Å) | 9.81 | 10.30 | 9.90 |
O1-O1 (Å) | 9.70 | 9.63 | 9.58 |
C.F.A. (Å2) | 39.07 | 41.43 | 38.90 |
Ellipticity (ε) | 1.01 | 1.07 | 1.03 |
Extracting Phase | Y200 | Beta25c |
---|---|---|
ACN | 53 ± 4 | 53 ± 5 |
MeOH | 63 ± 8 | 47 ± 3 |
MeOH:formic acid 90:10 pH 2.4 | 94 ± 14 | 115 ± 17 |
MeOH:formic acid 95:5 pH 2.5 | 88 ± 11 | 86 ± 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarti, E.; Chenet, T.; Stevanin, C.; Costa, V.; Cavazzini, A.; Catani, M.; Martucci, A.; Precisvalle, N.; Beltrami, G.; Pasti, L. High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions. Molecules 2020, 25, 3331. https://doi.org/10.3390/molecules25153331
Sarti E, Chenet T, Stevanin C, Costa V, Cavazzini A, Catani M, Martucci A, Precisvalle N, Beltrami G, Pasti L. High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions. Molecules. 2020; 25(15):3331. https://doi.org/10.3390/molecules25153331
Chicago/Turabian StyleSarti, Elena, Tatiana Chenet, Claudia Stevanin, Valentina Costa, Alberto Cavazzini, Martina Catani, Annalisa Martucci, Nicola Precisvalle, Giada Beltrami, and Luisa Pasti. 2020. "High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions" Molecules 25, no. 15: 3331. https://doi.org/10.3390/molecules25153331
APA StyleSarti, E., Chenet, T., Stevanin, C., Costa, V., Cavazzini, A., Catani, M., Martucci, A., Precisvalle, N., Beltrami, G., & Pasti, L. (2020). High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions. Molecules, 25(15), 3331. https://doi.org/10.3390/molecules25153331