Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents
Abstract
:1. Introduction
2. Results
2.1. HPLC Studies
2.2. In Vitro Results
2.2.1. Effect on Rabbit Paired Atria
2.2.2. Effect on Rabbit Aortic Preparations
2.2.3. Effect on Invasive Blood Pressure
2.3. In Vivo Results
2.3.1. Effect on ISO-Induced Left Ventricular Hypertrophy
Effect on Heart to Body Weight, Weight of Heart to Tail Length, and Weight of Heart to Tibia Length Ratios
Hemodynamic Studies Results
Histopathological Results in ISO induced Cardiac Hypertrophy
2.3.2. Effects on ISO-Induced Acute Myocardial Infarction
Hemodynamic Results
Histopathological Results in Acute Myocardial Infarction Studies
3. Discussion
4. Materials and Method
4.1. Plant Material and Preparation of Crude Extract
4.2. Chemicals and Reagent
4.3. Experimental Animals
4.4. HPLC Screening of Flavonoids and Phenolic Acids
4.5. In Vitro Experiments
4.5.1. Isolated Rabbit Paired Atria Preparation
4.5.2. Isolated Rabbit Aorta Preparation
4.5.3. Mechanism of Calcium Channel Blockade
4.6. In Vivo Experiments
4.6.1. Drug Administration and Blood Pressure Measurement by Invasive Method
4.6.2. ISO Induced Left Ventricular Hypertrophy
Measurement of Hemodynamic Parameters
Determination of Heart to Body Weight, Weight of Heart to Tail Length, and Weight of Heart to Tibia Length Ratio
Histopathological Examination
4.6.3. ISO Induced Myocardial Infarction
Estimation of Cardiac Heart Markers
Histopathology of Heart
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Blaha, M.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Gillespie, C. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation 2017, 135, 146–603. [Google Scholar] [CrossRef] [PubMed]
- Prince, P.S.M.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol. 2011, 668, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, K.; Iwanaga, Y.; Sarai, N.; Onozawa, Y.; Takenaka, H.; Mochly-Rosen, D.; Kihara, Y. Tissue angiotensin II during progression or ventricular hypertrophy to heart failure in hypertensive rats; differential effects on PKCε and PKCβ. J. Mol. Cell. Cardiol. 2002, 34, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-X.; Ohmori, K.; Nagai, Y.; Fujisawa, Y.; Nishiyama, A.; Abe, Y.; Kimura, S. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J. Mol. Cell. Cardiol. 2007, 42, 804–811. [Google Scholar] [CrossRef]
- Zhang, G.-X.; Kimura, S.; Nishiyama, A.; Shokoji, T.; Rahman, M.; Yao, L.; Abe, Y. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc. Res. 2005, 65, 230–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, N.; Sousa, R.; Carvalho, E.; Lobo, P. Experimental model of myocardial infarction induced by isoproterenol in rats. Braz. J. Cardiovasc. Surg. 2011, 26, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Yogeeta, S.K.; Gnanapragasam, A.; Kumar, S.S.; Subhashini, R.; Sathivel, A.; Devaki, T. Synergistic interactions of ferulic acid with ascorbic acid: Its cardioprotective role during isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem. 2006, 283, 139–146. [Google Scholar] [CrossRef]
- Syed, A.A.; Lahiri, S.; Mohan, D.; Valicherla, G.R.; Gupta, A.P.; Kumar, S.; Gayen, J.R. Cardioprotective effect of Ulmus wallichiana Planchon in β-adrenergic agonist induced cardiac hypertrophy. Front. Pharmacol. 2016, 7, 510. [Google Scholar] [CrossRef]
- Weir, C.J.; Gibson, I.F.; Martin, W. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta. Br. J. Pharmacol. 1991, 102, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Milani-Nejad, N.; Janssen, P.M. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Baghel, U.S.; Gautam, A.; Baghel, D.S.; Yadav, D.; Malik, J.; Yadav, R. The genus Anogeissus: A review on ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 194, 30–56. [Google Scholar] [CrossRef]
- Yadav, V.K.; Irchhiaya, R.; Ghosh, A. Phytochemical and Pharmacognostical Studies of Anogeissus acuminata. JDDT 2019, 9, 450–457. [Google Scholar] [CrossRef]
- Rahmatullah, M.; Hossan, M.S.; Hanif, A.; Roy, P.; Jahan, R.; Khan, M.; Rahman, T. Ethnomedicinal applications of plants by the traditional healers of the Marma tribe of Naikhongchhari, Bandarban district, Bangladesh. Adv. Nat. Appl. Sci. 2009, 3, 392–401. [Google Scholar]
- Sinha, R.; Lakra, V.; Mahanta, P. Traditional use of plants in curing stomach ailments by tribals of Jharkhand, Orissa and West Bengal. J. Dairy. Foods Home Sci. 2007, 26, 223–225. [Google Scholar]
- Hemamalini, K.; Preethi, B.; Bhargav, A.; Vasireddy, U. Hepatoprotective activity of Kigelia africana and Anogeissus accuminata against paracetamol induced hepatotoxicity in rats. Int. J. Pharm. Biomed. Res. 2012, 3, 152–156. [Google Scholar]
- Hemamalini, K.; Ramu, A.; Mallu, G.; Srividya, V.V.; Sravani, V.; Deepak, P.; Reddy, U.V. Evaluation of wound healing activity of different crude extracts of Anogeissus acuminata and Gymnosporia emerginata. Rasayan J. Chem. 2011, 4, 466–471. [Google Scholar]
- Navale, A.M.; Paranjape, A. Antidiabetic and renoprotective effect of Anogeissus acuminata leaf extract on experimentally induced diabetic nephropathy. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Jagetia, G.C. Detection of free radical scavenging activity of dhaura anogeissus acuminata roxb wall ex bedd in vitro. J. Altern. Complement. Med. 2019, 12, 141–147. [Google Scholar] [CrossRef]
- Rimando, A.M.; Pezzuto, J.M.; Farnsworth, N.R.; Santisuk, T.; Reutrakul, V.; Kawanishi, K. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J. Nat. Prod. 1994, 57, 896–904. [Google Scholar] [CrossRef]
- Mishra, M.P.; Padhy, R.N. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J. Appl. Biomed. 2018, 16, 120–125. [Google Scholar] [CrossRef]
- Navale, A.M.; Paranjape, A.N. In vitro antioxidant and PTP inhibitory activity of methanolic extract of Anogeissus acuminata leaf and bark. J. Pharm. Res. 2016, 10, 65–68. [Google Scholar]
- Hasan, M.; Kader, S.M.A.; Haque, M.I.; Khan, E.; Barua, J. Comparative analysis of thrombolytic activity of ethanol extract and its different fractions of anogeissus acuminata leaves. Infection 2017, 9, 10. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. BBA 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.S. Trees with Hepatoprotective and Cardioprotective Activities. In Medicinally Important Trees; Springer: Cham, Switzerland, 2017; pp. 133–157. [Google Scholar]
- Manosroi, J.; Moses, Z.Z.; Manosroi, W.; Manosroi, A. Hypoglycemic activity of Thai medicinal plants selected from the Thai/Lanna Medicinal Recipe Database MANOSROI II. J. Ethnopharmacol. 2011, 138, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Naveen, K.R.; Rajinikanth, B.; Akbar, M.; Rajasekaran, A. Antidiabetic, antihyperlipidemic and in vivo antioxidant potential of aqueous extract of Anogeissus latifolia bark in type 2 diabetic rats. Asian Pac. J. Trop. Dis. 2012, 2, S596–S602. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Khanna, D. Green tea catechins: Defensive role in cardiovascular disorders. Chin. J. Nat. Med. 2013, 11, 345–353. [Google Scholar] [CrossRef]
- Jin, L.; Lin, M.Q.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Jeong, M.H. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J. Hypertens. 2017, 35, 1502–1512. [Google Scholar] [CrossRef]
- Suzuki, A.; Yamamoto, N.; Jokura, H.; Yamamoto, M.; Fujii, A.; Tokimitsu, I.; Saito, I. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J. Hypertens. 2006, 24, 1065–1073. [Google Scholar] [CrossRef]
- Roy, S.J.; Prince, P.S.M. Protective effects of sinapic acid on cardiac hypertrophy, dyslipidaemia and altered electrocardiogram in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol. 2013, 699, 213–218. [Google Scholar] [CrossRef]
- Imtiaz, S.M.; Aleem, A.; Saqib, F.; Ormenisan, A.N.; Elena Neculau, A.; Anastasiu, C.V. The Potential Involvement of an ATP-Dependent Potassium Channel-Opening Mechanism in the Smooth Muscle Relaxant Properties of Tamarix dioica Roxb. Biomolecules 2019, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.; Okpalugo, B.; Small, R. Antagonism of Ca2+ and other actions of verapamil in guinea-pig isolated trachealis. Br. J. Pharmacol. 1984, 81, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janbaz, K.H.; Latif, M.F.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; De Feo, V. Pharmacological effects of Lactuca serriola L. in experimental model of gastrointestinal, respiratory, and vascular ailments. Evid. Based Complement. Altern. Med. 2013, 2013, 304394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saqib, F.; Janbaz, K.H. Rationalizing ethnopharmacological uses of Alternanthera sessilis: A folk medicinal plant of Pakistan to manage diarrhea, asthma and hypertension. J. Ethnopharmacol. 2016, 182, 110–121. [Google Scholar] [CrossRef]
- Takami, T.; Shigematsu, M. Effects of calcium channel antagonists on left ventricular hypertrophy and diastolic function in patients with essential hypertension. Clin. Exp. Hypertens. 2003, 25, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Gil-Longo, J.; González-Vázquez, C. Vascular pro-oxidant effects secondary to the autoxidation of gallic acid in rat aorta. J. Nutr. Biochem. 2010, 21, 304–309. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Revuelta, M.P.; Cantabrana, B.; Hidalgo, A. Depolarization dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2. Gen. Pharmacol. 1997, 29, 847–857. [Google Scholar] [CrossRef]
- Silambarasan, T.; Manivannan, J.; Priya, M.K.; Suganya, N.; Chatterjee, S.; Raja, B. Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS ONE 2014, 9, e115682. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Lee, J.-H.; Lee, W.; Ko, J.-Y.; Kim, E.-A.; Kim, J.-S.; Jeon, Y.J. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ. Toxicol. Pharmacol. 2015, 39, 764–772. [Google Scholar] [CrossRef]
- Shahzad, S.; Mateen, S.; Naeem, S.S.; Akhtar, K.; Rizvi, W.; Moin, S. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. Eur. J. Pharmacol. 2019, 849, 135–145. [Google Scholar] [CrossRef]
- Leenen, F.H.; White, R.; Yuan, B. Isoproterenol-induced cardiac hypertrophy: Role of circulatory versus cardiac renin-angiotensin system. Am. J. Physiol.-Heart Circ. Physiol. 2001, 281, H2410–H2416. [Google Scholar] [CrossRef] [Green Version]
- Ichihara, S.; Senbonmatsu, T.; Price, E., Jr.; Ichiki, T.; Gaffney, F.A.; Inagami, T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II–induced hypertension. Circulation 2001, 104, 346–351. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.; Robb, S.; Murdoch, D.; Morton, J.; Ford, I.; Morrison, C.; Dargie, H.J. Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998, 351, 9–13. [Google Scholar] [CrossRef]
- Lopez, J.; Lorell, B.; Ingelfinger, J.; Weinberg, E.; Schunkert, H.; Diamant, D.; Tang, S.S. Distribution and function of cardiac angiotensin AT1-and AT2-receptor subtypes in hypertrophied rat hearts. Am. J. Physiol.-Heart Circ. Physiol. 1994, 267, H844–H852. [Google Scholar] [CrossRef]
- Krenek, P.; Kmecova, J.; Kucerova, D.; Bajuszova, Z.; Musil, P.; Gazova, A.; Kyselovic, J. Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur. J. Heart Fail. 2009, 11, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Hodgson, J.M.; Mas, E.; Croft, K.D.; Ward, N.C. Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1. J. Nutr. Biochem. 2016, 27, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Der Sarkissian, S.; Tea, B.-S.; Touyz, R.M.; Deblois, D.; Hale, T.M. Role of angiotensin II type 2 receptor during regression of cardiac hypertrophy in spontaneously hypertensive rats. J. Am. Soc. Hypertens. 2013, 7, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Linz, W.; Wiemer, G.; Schaper, J.; Zimmermann, R.; Nagasawa, K.; Gohlke, P.; Schölkens, B.A. Angiotensin converting enzyme inhibitors, left ventricular hypertrophy and fibrosis. In Cellular Interactions in Cardiac Pathophysiology; Springer: Boston, MA, USA, 1995; pp. 89–97. [Google Scholar]
- Nagano, M.; Higaki, J.; Mikami, H.; Nakamaru, M.; Higashimori, K.; Katahira, K.; Ogihara, T. Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats. J. Hypertens. 1991, 9, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Fu, L.; Li, C.Y.; Xu, L.P.; Zhang, L.X.; Zhang, W.M. Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J. Food Sci. 2017, 82, 1239–1246. [Google Scholar] [CrossRef]
- Kanno, Y.; Watanabe, R.; Zempo, H.; Ogawa, M.; Suzuki, J.-I.; Isobe, M. Chlorogenic acid attenuates ventricular remodeling after myocardial infarction in mice. Int. Heart J. 2013, 54, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y. Roles of atrial natriuretic peptide and its therapeutic use. J. Cardiol. 2010, 56, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Wang, H.; Wu, Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene 2015, 569, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gopi, V.; Subramanian, V.; Manivasagam, S.; Vellaichamy, E. Angiotensin II down-regulates natriuretic peptide receptor-A expression and guanylyl cyclase activity in H9c2 (2-1) cardiac myoblast cells: Role of ROS and NF-κB. Mol. Cell. Biochem. 2015, 409, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, D.; Tang, X.; Li, X.; Wo, D.; Yan, H.; Li, J. Chlorogenic acid prevents isoproterenol-induced hypertrophy in neonatal rat myocytes. Toxicol. Lett. 2014, 226, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Han, B.; Yu, T.; Peng, Z. The complex regulation of tanshinone IIA in rats with hypertension-induced left ventricular hypertrophy. PLoS ONE 2014, 9, e92216. [Google Scholar] [CrossRef]
- Thomes, P.; Rajendran, M.; Pasanban, B.; Rengasamy, R. Cardioprotective activity of Cladosiphon okamuranus fucoidan against isoproterenol induced myocardial infarction in rats. Phytomedicine 2010, 18, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Javed, S.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; De Feo, V. Validation of ethnopharmacological uses of Heliotropium strigosum Willd. as spasmolytic, bronchodilator and vasorelaxant remedy. BMC Complement. Altern. Med. 2015, 15, 169. [Google Scholar] [CrossRef] [Green Version]
- Janbaz, K.H.; Arif, J.; Saqib, F.; Imran, I.; Ashraf, M.; Zia-Ul-Haq, M.; De Feo, V. In-vitro and in-vivo validation of ethnopharmacological uses of methanol extract of Isodon rugosus Wall. ex Benth. (Lamiaceae). BMC Complement. Altern. Med. 2014, 14, 71. [Google Scholar] [CrossRef] [Green Version]
- Gilani, A.H.; Jabeen, Q.; Khan, A.-U.; Shah, A.J. Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J. Ethnopharmacol. 2008, 115, 463–472. [Google Scholar] [CrossRef]
- Loffredo, F.S.; Steinhauser, M.L.; Jay, S.M.; Gannon, J.; Pancoast, J.R.; Yalamanchi, P.; Miller, C.M. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 2013, 153, 828–839. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, H.A.; Bastiaansen, J.A.; Berthonneche, C.; Comment, A.; Schwitter, J. An intact small animal model of myocardial ischemia-reperfusion: Characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H2058–H2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Standards Used | Crude Extract of Anogeissus acuminata | |||
---|---|---|---|---|
Compound Name | Retention Time | Compound Name | Retention Time | Concentration of Detected Compound (µg/g) |
Gallic acid | 2.806 | Gallic acid | 2.70 | 1279.17 |
Butylated hydroxytoluene (BHT) | 7.041 | ----- | ----- | ----- |
Chlorogenic acid | 5.227 | Chlorogenic acid | 5.219 | 292.70 |
Ferulic acid | 12.967 | ----- | ----- | ----- |
P-coumaric acid | 5.596 | ----- | ----- | ----- |
Catechin | 3.386 | Catechin | 3.365 | 1728.45 |
Caffeic acid | 7.842 | ----- | ----- | ----- |
Sinapic acid | 12.679 | Sinapic acid | 12.619 | 14.26 |
Quercetin | 24.893 | ----- | ----- | ----- |
Group Name | Cell Diameter (µm) | Cell Surface Area (µm) | Cell Count |
---|---|---|---|
A | 6 | 98 | 1300 |
9 | 110 | 1235 | |
7 | 101 | 1191 | |
8 | 89 | 1206 | |
6 | 95 | 1295 | |
B | 19 | 198 | 600 |
20 | 189 | 750 | |
22 | 209 | 800 | |
C | 12 | 156 | 935 |
14 | 170 | 895 | |
11 | 177 | 860 | |
D | 10 | 141 | 907 |
10 | 165 | 880 | |
13 | 151 | 940 | |
E | 10 | 142 | 990 |
11 | 151 | 964 | |
9 | 161 | 1006 | |
F | 7 | 102 | 1025 |
9 | 121 | 1109 | |
8 | 114 | 980 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saqib, F.; Arif Aslam, M.; Mujahid, K.; Marceanu, L.; Moga, M.; Ahmedah, H.T.; Chicea, L. Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents. Molecules 2020, 25, 3471. https://doi.org/10.3390/molecules25153471
Saqib F, Arif Aslam M, Mujahid K, Marceanu L, Moga M, Ahmedah HT, Chicea L. Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents. Molecules. 2020; 25(15):3471. https://doi.org/10.3390/molecules25153471
Chicago/Turabian StyleSaqib, Fatima, Muhammad Arif Aslam, Khizra Mujahid, Luigi Marceanu, Marius Moga, Hanadi Talal Ahmedah, and Liana Chicea. 2020. "Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents" Molecules 25, no. 15: 3471. https://doi.org/10.3390/molecules25153471
APA StyleSaqib, F., Arif Aslam, M., Mujahid, K., Marceanu, L., Moga, M., Ahmedah, H. T., & Chicea, L. (2020). Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents. Molecules, 25(15), 3471. https://doi.org/10.3390/molecules25153471