Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds
Abstract
:1. Introduction
2. Results
2.1. Shoot Commodity Assessment
2.2. Phytochemical Shoot Content
2.3. Antioxidant and Antiradical Extract Properties
2.4. Antimicrobial Screening
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction
4.2.2. Commodity Assessment, Color and Osmolality of Extracts
4.2.3. HPLC Determination of Phenolic Acids and Flavonols
4.2.4. Folin-Ciocâlteu Reagent Assay
4.2.5. Total Flavonoid Content
4.2.6. Ferric Reducing Antioxidant Power Assay
4.2.7. DPPH Radical Scavenging Activity
4.2.8. Antimicrobial Screening
4.2.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Varelas, V.; Langton, M. Forest biomass waste as a potential innovative source for rearing edible insects for food and feed—A review. Innov. Food Sci. Emerg. Technol. 2017, 41, 193–205. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Jokanović, M.; Ikonić, P.; Džinić, N.; Kocić-Tanackov, S.; Popović, L.; Tasić, T.; Savanović, J.; Šojić, N.Ž. Antioxidant activity of Juniperus communis L. essential oil in cooked pork sausages. Czech. J. Food Sci. 2017, 35, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Penkina, N.; Tatar, L.; Kolesnyk, V.; Karbivnycha, T.; Letuta, T. The study of beer quality with the reduced toxic effect. Eureka Life Sci. 2017, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Semeniuc, C.A.; Rotar, A.; Stan, L.; Pop, C.R.; Socaci, S.; Mireşan, V.; Muste, S. Characterization of pine bud syrup and its effect on physicochemical and sensory properties of kefir. CyTa-J. Food 2016, 14, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Akaberi, M.; Boghrati, Z.; Amiri, M.S.; Khayyat, M.H.; Emami, S.A. A review of conifers in Iran: Chemistry, biology and their importance in traditional and modern medicine. Curr. Pharm. Des. 2020. [Google Scholar] [CrossRef]
- Bradley, W.G.; Holm, K.N.; Tanaka, A. An orally active immune adjuvant prepared from cones of Pinus sylvestris, enhances the proliferative phase of a primary T cell response. BMC Complementary Altern. Med. 2014, 14, 163. [Google Scholar] [CrossRef] [Green Version]
- Glaser, A.; Zhao, G. Utilization of Scots Pine oil in chinese medicine. Int. J. Tradit. Chin. Med. 2012, 34, 229–231. [Google Scholar]
- Dziedziński, M.; Kobus-Cisowska, J.; Powałowska, D.S.-; Szablewska, K.S.-; Baranowska, M. Polyphenols composition, antioxidant and antimicrobial properties of Pinus sylvestris L. shoots extracts depending on different drying methods. Emir. J. Food Agric. 2020, 32, 229–237. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; LD Jayaweera, S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, A.L.; Figueiredo, C.R.; Arruda, D.C.; Pereira, F.V.; Scutti, J.A.B.; Massaoka, M.H.; Travassos, L.R.; Sartorelli, P.; Lago, J.H.G. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 2011, 411, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.-Y.; Chung, C.; Seo, J.-H.; Rah, S.-Y.; Kim, H.-M.; Jeong, H.-J. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.D.A.; Magalhães, R.M.; Torres, D.M.; Cavalcante, R.C.; Mota, F.S.X.; Oliveira Coelho, E.M.A.; Moreira, H.P.; Lima, G.C.; Araújo, P.C.D.C.; Cardoso, J.H.L.; et al. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharm. Mag. 2015, 11, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Zamyad, M.; Abbasnejad, M.; Esmaeili-Mahani, S.; Mostafavi, A.; Sheibani, V. The anticonvulsant effects of Ducrosia anethifolia (Boiss) essential oil are produced by its main component alpha-pinene in rats. Arq. Neuropsiquiatr. 2019, 77, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, S.A.; Shahani, A.; Hassanzadeh Khayyat, M. Antioxidant Activity of Leaves and Fruits of Cultivated Conifers in Iran. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Demerdash, F.M.; Tousson, E.M.; Kurzepa, J.; Habib, S.L. Xenobiotics, Oxidative Stress, and Antioxidants. Oxid. Med. Cell Longev. 2018, 2018, 9758951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Chapter 10—Breaking down the barriers to functional foods, supplements, and claims1. In Nutraceutical and Functional Food Regulations in the United States and Around the World (Third Edition); Bagchi, D., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 121–146. ISBN 978-0-12-816467-9. [Google Scholar]
- Asgary, S.; Rastqar, A.; Keshvari, M. Functional Food and Cardiovascular Disease Prevention and Treatment: A Review. J. Am. Coll. Nutr. 2018, 37, 429–455. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in tomatoes and tomato products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; Ma, Y.; Zhang, C.; Li, L.; Pang, L.; Huang, X. Antioxidants and Antioxidant Capacity in Leafy, Stem, and Fruit Vegetables Including 50 Species. J. Food Eng. Technol. 2018, 7, 8. [Google Scholar]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Durak, M.Z.; Uçak, G. Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk. J. Agric 2015, 39, 10–19. [Google Scholar] [CrossRef]
- Dziedziński, M.; Szczepaniak, O.; Telichowska, A.; Kobus-Cisowska, J. Antioxidant capacity and cholinesterase inhibiting properties of dietary infusions with Humulus lupulus. J. Elem. 2020, 25, 657–673. [Google Scholar] [CrossRef]
- Sant’ana, L.D.; Ferreira, A.B.B.; Lorenzon, M.C.A.; Berbara, R.L.L.; Castro, R.N. Correlation of Total Phenolic and Flavonoid Contents of Brazilian Honeys with Colour and Antioxidant Capacity. Int. J. Food Prop. 2014, 17, 65–76. [Google Scholar] [CrossRef]
- Kilic, A.; Hafizoglu, H.; Tümen, I.; Dönmez, I.E.; Sivrikaya, H.; Hemming, J. Phenolic extractives of cones and berries from Turkish coniferous species. Eur. J. Wood Prod. 2011, 69, 63–66. [Google Scholar] [CrossRef]
- Ganthaler, A.; Stöggl, W.; Mayr, S.; Kranner, I.; Schüler, S.; Wischnitzki, E.; Sehr, E.M.; Fluch, S.; Trujillo-Moya, C. Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust. Plant. Mol. Biol. 2017, 94, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Raitanen, J.-E.; Järvenpää, E.; Korpinen, R.; Mäkinen, S.; Hellström, J.; Kilpeläinen, P.; Liimatainen, J.; Ora, A.; Tupasela, T.; Jyske, T. Tannins of Conifer Bark as Nordic Piquancy—Sustainable Preservative and Aroma? Molecules 2020, 25, 567. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, O.; Ligaj, M.; Kobus-Cisowska, J.; Tichoniuk, M.; Dziedziński, M.; Przeor, M.; Szulc, P. The Genoprotective Role of Naringin. Biomolecules 2020, 10, 700. [Google Scholar] [CrossRef]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Zerrouki, A.; Cherrah, Y.; Alaoui, K. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv. Pharm. Sci. 2016, 2016, 6392656. [Google Scholar] [CrossRef] [Green Version]
- Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A.; et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lwt -Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Tagasgira, M.; Watanabe, M.; Uemitsu, N. Antioxidative Activity of Hop Bitter Acids and Their Analogues. Biosci. Biotechnol. Biochem. 1995, 59, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Zouhir, A.; Hamida, J.B.; Neffati, M.; Vergoten, G.; Naghmouchi, K.; Fliss, I. Antimicrobial properties of aqueous extracts from three medicinal plants growing wild in arid regions of Tunisia. Pharm. Biol. 2009, 47, 452–457. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.-M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Szulc, P.; Szczepaniak, O.; Dziedziński, M.; Szymanowska, D.; Szymandera-Buszka, K.; Goryńska-Goldmann, E.; Gazdecki, M.; Telichowska, A.; Ligaj, M. Variability of Hordeum vulgare L. Cultivars in Yield, Antioxidant Potential, and Cholinesterase Inhibitory Activity. Sustainability 2020, 12, 1938. [Google Scholar] [CrossRef] [Green Version]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Connor, T.P.; O’Brien, N.M. Comparison of the Antioxidant Activity of Commercial Honeys, Before and After In-Vitro Digestion. Pol. J. Food Nutr. Sci. 2013, 63, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, O.M.; Ligaj, M.; Kobus-Cisowska, J.; Maciejewska, P.; Tichoniuk, M.; Szulc, P. Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts. CyTa-J. Food 2019, 17, 781–789. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the Picea abies L., Larix decidua Mill, Pinus sylvestris L., Pseudotsuga menziesii and Juniperus communis L. shoots are available from the authors. |
Parameter | Pseudotsuga menziesii | Juniperus communis L. | Larix decidua Mill | Pinus sylvestris L. | Picea abies L. | |
---|---|---|---|---|---|---|
Needle Shape | Flattened, cylindrical | Wide, flattened diamonds | Thin, filamentous | filamentous | Elongated diamond | |
Needle Length (mm) | 23.27 a ± 2.99 | 8.74 b ± 3.08 | 25.31 c ± 5.26 | 54.84 d ± 9.91 | 14.32 e ± 2.91 | |
Color | L* | 33.74 a ± 2.50 | 38.83 b ± 0.35 | 29.31 c ± 0.14 | 30.33 c ± 0.78 | 26.09 d ± 0.56 |
a* | −0.18 a ± 0.99 | −5.25 b ± 0.20 | 2.14 c ± 0.22 | −1.14 a ± 1.19 | 8.26 d ± 0.91 | |
b* | 13.43 a ± 0.18 | 24.48 b ± 0.21 | 15.28 c ± 0.71 | 10.73 d ± 0.23 | 14.82 c ± 0.36 | |
Dry Weight (%) | 13.25 a ± 0.35 | 10.95 b ± 0.35 | 16.16 c ± 0.49 | 32.22 d ± 0.49 | 13.98 a ± 0.49 | |
Extract Osmolality (mOsm/kg H2O) | 0.04 a ± 0.00 | 0.04 b ± 0.00 | 0.05 c ± 0.00 | 0.02 d ± 0.00 | 0.05 e ± 0.00 | |
Freezing Temperature (°C) | −0.08 ± 0.00 | −0.07 ± 0.00 | −0.09 ± 0.00 | −0.04 ± 0.00 | −0.09 ± 0.00 |
Phenolic Acid (µg/g dw) | LD | JC | PM | PS | PA |
---|---|---|---|---|---|
Gallic Acid | 10.86 b ± 0.48 | 994.72 c ± 47.49 | 57.04 d ± 1.27 | 208.38 e ± 069 | 695.88 f ± 5.29 |
2,5-Dihydroxobenzoic Acid | 130.11 b ± 6.8 | 25.55 c ± 0.15 | 7.18 c ± 0.16 | 16.63 c ± 0.54 | 62.43 d ± 1.95 |
4-Hydroxybenzoic Acid | 622.99 b ± 24.61 | 22.96 b ± 1.44 | 1148.62 b ± 23.72 | 1084.92 b ± 39.04 | 4014.44 c ± 58.25 |
Caffeic Acid | 2994.35 b ± 104.77 | 5999.36 c ± 156.04 | 1499.61 d ± 36.84 | 1502.03 d ± 52.53 | 5094.84 e ± 228.14 |
Syringic Acid | 139.15 b ± 3.89 | 50.12 c ± 1.79 | 113.97 d ± 4.2 | 145.44 b ± 3.28 | 301.96 e ± 9.55 |
p-Coumaric Acid | 298.03 b ± 6.58 | 82.49 c ± 4.26 | 68.75 c ± 3.39 | 387.89 d ± 15.83 | 168.58 a ± 10.89 |
Ferulic Acid | 3708.83 b ± 127.71 | 1379.03 c ± 14.44 | 5002.20 d ± 212.87 | 2088.89 e ± 56.89 | 1129.85 f ± 31.1 |
Chlorogenic Acid | 501.97 b ± 22.84 | 2093.81 c ± 34.93 | 984.09 d ± 23.28 | 518.25 b ± 4.90 | 4534.29 e ± 227.15 |
Sinapic Acid | 43.61 b ± 1.64 | 214.18 c ± 3.68 | 6.86 a ± 0.18 | 54.09 b ± 2.06 | 1172.00 d ± 24.37 |
t-Cinnamic Acid | 819.74 b ± 29.33 | 127.53 a ± 1.91 | 55.86 c ± 2.63 | 111.44 a ± 3.4 | 781.83 d ± 40.05 |
Vanillic Acid | 0.33 b ± 0.00 | 0.47 c ± 0.01 | 0.95 d ± 0.02 | 0.46 c ± 0.01 | 1.56 e ± 0.01 |
Salicylic acid | 0.36 b ± 0.00 | 0.75 c ± 0.01 | 1.04 d ± 0.01 | 0.36 b ± 0.00 | 0.34 a ± 0.01 |
Naringenin | 1.00 b ± 0.02 | 1.03 c ± 0.08 | 1.04 b ± 0.02 | 1.59 d ± 0.02 | 1.42 e ± 0.06 |
Vitexin | 0.53 b ± 0.00 | 1.11 c ± 0.02 | 0.78 d ± 0.02 | 0.61 e ± 0.01 | 0.30 f ± 0.00 |
Rutin | 0.52 b ± 0.01 | 1.14 c ± 0.02 | 0.73 d ± 0.03 | 0.63 e ± 0.02 | 0.31 f ± 0.01 |
Quercetin | 0.63 b ± 0.00 | 0.64 b ± 0.01 | 1.38 c ± 0.06 | 0.98 d ± 0.03 | 1.24 e ± 0.04 |
Apigenin | 0.62 b ± 0.02 | 0.30 a ± 0.01 | 0.30 a ± 0.00 | 0.30 a ± 0.01 | 0.31 a ± 0.01 |
Kaempferol | 0.30 a ± 0.01 | 0.31 a ± 0.00 | 0.33 b ± 0.01 | 0.38 c ± 0.01 | 0.36 d ± 0.01 |
Luteolin | 0.30 a ± 0.01 | 0.30 a ± 0.01 | 0.31 a ± 0.01 | 0.30 a ± 0.01 | 0.30 a ± 0.01 |
Total Content | 9274.23 | 10,995.8 | 8951.04 | 6123.57 | 13,947.80 |
Species | DPPH (μM Trolox/g dw) | FRAP (μM FeSO4/g dw) | FCR (mg GAE/g dw) | Total Flavonoid Content (mg QE/g dw) |
---|---|---|---|---|
Picea abiesL. | 404.18 a ± 10.15 | 15.37 a ± 2.55 | 13.30 a ± 0.55 | 3.54 a ± 0.19 |
Pinus sylvestrisL. | 200.94 b ± 23.47 | 42.76 b ± 5.7 | 0.86 b ± 0.09 | 8.29 b ± 0.94 |
Pseudotsuga menziesii | 269.55 c ± 6.31 | 5.43 a ± 1.58 | 14.53 c ± 0.64 | 7.46 c ± 0.27 |
Juniperus communisL. | 384.30 a ± 10.88 | 62.88 c ± 0.36 | 8.25 d ± 1.01 | 6.34 d ± 0.09 |
Larix deciduaMill | 326.93 d ± 21.21 | 147.94 d ± 21.86 | 14.83 c ± 0.30 | 9.90 e ± 0.12 |
Microorganism | PM | JC | LD | PS | PA | |
---|---|---|---|---|---|---|
Growth Inhibition Zone (mm) | ||||||
Gram-Negative Bacteria | ||||||
1 | Klebsiella pneumoniae ATCC 31,488 | 8 a ± 2 | 12 b ± 2 | 5 c ± 1 | 22 d ± 2 | 28 e ± 3 |
2 | Salmonella enteritidis ATCC 13076 | 6 a ± 1 | 9 b ± 2 | 3 c ± 1 | 16 d ± 2 | 29 e ± 3 |
3 | Pseudomonas aeruginosa ATCC 27853 | 11 a ± 2 | 10 a ± 2 | 9 b ± 2 | 27 c ± 3 | 32 d ± 2 |
4 | Acinetobacter baumannii ATCC 19606 | 8 a ± 1 | 11 b ± 2 | 3 c ± 1 | 20 d ± 2 | 26 e ± 3 |
Gram-Positive Bacteria | ||||||
5 | Enterococcus faecium ATCC 27270 | 4 a ± 1 | 12 b ± 2 | 9 c ± 1 | 18 d ± 2 | 19 d ± 2 |
6 | Staphylococcus aureus ATCC 25923 | 2 a ± 0 | 15 b ± 3 | 11 c ± 2 | 19 d ± 2 | 22 e ± 2 |
7 | Lactobacillus fermentum ATCC 14932 | 3 a ± 1 | 17 b ± 3 | 13 c ± 2 | 13 c ± 2 | 29 d ± 3 |
8 | Clostridium butyricum ATCC 860 | 9 a ± 2 | 16 b ± 2 | 10 c ± 1 | 17 d ± 2 | 28 e ± 3 |
9 | Listeria monocytogenes ATCC 19,115 | 8 a ± 2 | 15 b ± 2 | 7 a ± 1 | 19 c ± 2 | 25 d ± 3 |
10 | Bacillus coagulans GBI-30, 6086 | 7 a ± 2 | 12 b ± 1 | 10 c ± 2 | 19 d ± 2 | 21 e ± 3 |
Fungi | ||||||
11 | Candida utilis ATCC 9950 | 3 a ± 1 | 5 b ± 1 | 3 a ± 1 | 6 c ± 1 | 8 d ± 2 |
12 | Aspergillus sp. | 4 a ± 1 | 4 a ± 1 | 6 b ± 1 | 5 c ± 1 | 5 c ± 1 |
13 | Fusarium sp. | 2 a ± 0 | 5 b ± 1 | 2 a ± 0 | 5 a ± 1 | 9 b ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzinski, M.; Kobus-Cisowska, J.; Szymanowska, D.; Stuper-Szablewska, K.; Baranowska, M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules 2020, 25, 3527. https://doi.org/10.3390/molecules25153527
Dziedzinski M, Kobus-Cisowska J, Szymanowska D, Stuper-Szablewska K, Baranowska M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules. 2020; 25(15):3527. https://doi.org/10.3390/molecules25153527
Chicago/Turabian StyleDziedzinski, Marcin, Joanna Kobus-Cisowska, Daria Szymanowska, Kinga Stuper-Szablewska, and Marlena Baranowska. 2020. "Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds" Molecules 25, no. 15: 3527. https://doi.org/10.3390/molecules25153527
APA StyleDziedzinski, M., Kobus-Cisowska, J., Szymanowska, D., Stuper-Szablewska, K., & Baranowska, M. (2020). Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules, 25(15), 3527. https://doi.org/10.3390/molecules25153527