Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections
Abstract
:1. Introduction
The Need for New Antimicrobials
2. Alkaloids
2.1. Indole Alkaloids
2.1.1. β-Carbolines
2.1.2. Carbazoles
2.1.3. Yohimbans
2.1.4. Clavine Alkaloids
2.2. Isoquinoline Alkaloids
2.2.1. Protoberberines
2.2.2. Benzophenanthredines
2.2.3. Bisbenzylisoquinolines
2.2.4. Aporphines
2.3. Piperidines
2.4. Other Alkaloids (Quinolone and Indoloquinazolines)
Common Name | Chemical Structure | Tested Microorganism | Antimicrobial Effect | Source | Ref. |
---|---|---|---|---|---|
Piperine | MRSA | Efflux Pump and cytochrome P450-mediated pathways Inhibitor | Species: Piper nigrum Piper longum | [55] | |
Evocarpine | MRSA M. tubercolosis | Peptidoglycan biosynthesis Inhibitor | Species: Tetradium ruticarpum | [139,140] | |
Evodiamine | M. tubercolosis | Peptidoglycan biosynthesis Inhibitor | Species: Tetradium ruticarpum | [140,143] | |
Rutaecarpine | M. tubercolosis | Peptidoglycan biosynthesis Inhibitor | Species: Tetradium ruticarpum | [140,143] |
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health 2014, 2014, 147. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries. 2014, 8, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Gross, M. Antibiotics in crisis. Curr. Biol. 2013, 23, R1063–R1065. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, J.A. Hospital-associated MRSA and antibiotic resistance-what have we learned from genomics? Int. J. Med. Microbiol. 2013, 303, 318–323. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef]
- Levitus, M.; Rewane, A.; Perera, T.B. Vancomycin-Resistant Enterococci (VRE); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Jean, S.S.; Gould, I.M.; Lee, W.S.; Hsueh, P.R.; International Society of Antimicrobial Chemotherapy (ISAC). New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs 2019, 79, 705–714. [Google Scholar] [CrossRef]
- Duval, R.E.; Grare, M.; Demore, B. Fight against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Molecules 2019, 24, 3152. [Google Scholar] [CrossRef] [Green Version]
- Casciaro, B.; Loffredo, M.R.; Luca, V.; Verrusio, W.; Cacciafesta, M.; Mangoni, M.L. Esculentin-1a Derived Antipseudomonal Peptides: Limited Induction of Resistance and Synergy with Aztreonam. Protein Pept. Lett. 2018, 25, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T. New antimicrobials--lots of talk, where is the action? Lancet Infect. Dis. 2016, 16, 411–412. [Google Scholar] [CrossRef]
- Zappia, G.; Ingallina, C.; Ghirga, F.; Botta, B. Oxazolidin-2-Ones: Antibacterial Activity and Chemistry. In Antimicrobials: New and Old Molecules in the Fight Against Multi-resistant Bacteria; Marinelli, F., Genilloud, O., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2014; pp. 247–266. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm. Ther. 2015, 40, 344–352. [Google Scholar]
- Barbosa, F.; Pinto, E.; Kijjoa, A.; Pinto, M.; Sousa, E. Targeting Antimicrobial Drug Resistance with Marine Natural Products. Int. J. Antimicrob. Agents 2020, 106005. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Ghirga, F.; Bonamore, A.; Calisti, L.; D’Acquarica, I.; Mori, M.; Botta, B.; Boffi, A.; Macone, A. Green Routes for the Production of Enantiopure Benzylisoquinoline Alkaloids. Int. J. Mol. Sci. 2017, 18, 2464. [Google Scholar] [CrossRef] [Green Version]
- Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide-co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: In Vitro and in Vivo Studies. Biomacromolecules 2019, 20, 1876–1888. [Google Scholar] [CrossRef]
- Casciaro, B.; Cappiello, F.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr. Med. Chem. 2020, 27, 1405–1419. [Google Scholar] [CrossRef]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368. [Google Scholar] [CrossRef]
- Falanga, A.; Nigro, E.; De Biasi, M.G.; Daniele, A.; Morelli, G.; Galdiero, S.; Scudiero, O. Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules 2017, 22, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; de Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. FEBS J. 2019, 286, 3874–3891. [Google Scholar] [CrossRef] [PubMed]
- Musale, V.; Casciaro, B.; Mangoni, M.L.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Conlon, J.M. Assessment of the potential of temporin peptides from the frog Rana temporaria (Ranidae) as anti-diabetic agents. J. Pept. Sci. 2018, 24. [Google Scholar] [CrossRef]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept. 2013, 2013, 675391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglio, D.; Corradi, S.; Erazo, S.; Vergine, V.; Berardozzi, S.; Sciubba, F.; Cappiello, F.; Crestoni, M.E.; Ascenzioni, F.; Imperi, F.; et al. Structural Elucidation and Antimicrobial Characterization of Novel Diterpenoids from Fabiana densa var. ramulosa. ACS Med. Chem. Lett. 2020. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [Green Version]
- Ghirga, F.; Stefanelli, R.; Cavinato, L.; Lo Sciuto, A.; Corradi, S.; Quaglio, D.; Calcaterra, A.; Casciaro, B.; Loffredo, M.R.; Cappiello, F.; et al. A novel colistin adjuvant identified by virtual screening for ArnT inhibitors. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Cappiello, F.; Loffredo, M.R.; Del Plato, C.; Cammarone, S.; Casciaro, B.; Quaglio, D.; Mangoni, M.L.; Botta, B.; Ghirga, F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics 2020, 9, 325. [Google Scholar] [CrossRef]
- Berardozzi, S.; Bernardi, F.; Infante, P.; Ingallina, C.; Toscano, S.; De Paolis, E.; Alfonsi, R.; Caimano, M.; Botta, B.; Mori, M.; et al. Synergistic inhibition of the Hedgehog pathway by newly designed Smo and Gli antagonists bearing the isoflavone scaffold. Eur. J. Med. Chem. 2018, 156, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Quaglio, D.; Zhdanovskaya, N.; Tobajas, G.; Cuartas, V.; Balducci, S.; Christodoulou, M.S.; Fabrizi, G.; Gargantilla, M.; Priego, E.M.; Carmona Pestana, A.; et al. Chalcones and Chalcone-mimetic Derivatives as Notch Inhibitors in a Model of T-cell Acute Lymphoblastic Leukemia. ACS Med. Chem. Lett. 2019, 10, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Lospinoso Severini, L.; Quaglio, D.; Basili, I.; Ghirga, F.; Bufalieri, F.; Caimano, M.; Balducci, S.; Moretti, M.; Romeo, I.; Loricchio, E.; et al. A Smo/Gli Multitarget Hedgehog Pathway Inhibitor Impairs Tumor Growth. Cancers 2019, 11, 1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Osbourn, A.E.; Lanzotti, V. Plant.-Derived Natural Products; Springer US: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Corson, T.W.; Crews, C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Karamanou, M.; Tsoucalas, G.; Pantos, K.; Androutsos, G. Isolating Colchicine in 19th Century: An Old Drug Revisited. Curr. Pharm. Des. 2018, 24, 654–658. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R. The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Lozzi, F.; Lanna, C.; Mazzeo, M.; Garofalo, V.; Palumbo, V.; Mazzilli, S.; Diluvio, L.; Terrinoni, A.; Bianchi, L.; Campione, E. Investigational drugs currently in phase II clinical trials for actinic keratosis. Expert Opin. Investig. Drugs 2019, 28, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Ashour, M.L.; El-Readi, M.Z. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents. Front. Microbiol. 2012, 3, 130. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, Y.; Li, D.; Chen, Y.; Dou, Q.P. Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opin. Drug Discov. 2019, 14, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.C.; Evans, D. Chapter 26-Alkaloids. In Trease and Evans’ Pharmacognosy (Sixteenth Edition); Evans, W.C., Evans, D., Eds.; W.B. Saunders: Amsterdam, The Netherlands, 2009; pp. 353–415. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids 2005, 40, 1081–1105. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Tyler, V.E.; Speedie, M.K.; Robbers, J.E. Pharmacognosy and Pharmacobiotechnology; Williams & Wilkins: Philadelphia, PA, USA, 1996; pp. 144–185. [Google Scholar]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Amirkia, V.; Heinrich, M. Alkaloids as drug leads—A predictive structural and biodiversity-based analysis. Phytochem. Lett. 2014, 10, xlviii–liii. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm. 2015, 41, 989–994. [Google Scholar] [CrossRef]
- Ghirga, F.; Quaglio, D.; Ghirga, P.; Berardozzi, S.; Zappia, G.; Botta, B.; Mori, M.; D’Acquarica, I. Occurrence of Enantioselectivity in Nature: The Case of (S)-Norcoclaurine. Chirality 2016, 28, 169–180. [Google Scholar] [CrossRef]
- Ingallina, C.; D’Acquarica, I.; Delle Monache, G.; Ghirga, F.; Quaglio, D.; Ghirga, P.; Berardozzi, S.; Markovic, V.; Botta, B. The Pictet-Spengler Reaction Still on Stage. Curr. Pharm. Des. 2016, 22, 1808–1850. [Google Scholar] [CrossRef]
- Menendez, P.; D’Acquarica, I.; Monache, G.D.; Ghirga, F.; Calcaterra, A.; Barba, M.; Macone, A.; Boffi, A.; Bonamore, A.; Botta, B. Production of Bioactives Compounds: The Importance of Pictet–Spengler Reaction in the XXI Century. In Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives; Wang, B., Cechinel-Filho, V., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Calcaterra, A.; Mangiardi, L.; Delle Monache, G.; Quaglio, D.; Balducci, S.; Berardozzi, S.; Iazzetti, A.; Franzini, R.; Botta, B.; Ghirga, F. The Pictet-Spengler Reaction Updates Its Habits. Molecules 2020, 25, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglio, D.; Zappia, G.; De Paolis, E.; Balducci, S.; Botta, B.; Ghirga, F. Olefin metathesis reaction as a locking tool for macrocycle and mechanomolecule construction. Org. Chem. Front. 2018, 5, 3022–3055. [Google Scholar] [CrossRef]
- Ravindar, L.; Lekkala, R.; Rakesh, K.P.; Asiri, A.M.; Marwani, H.M.; Qin, H.-L. Carbonyl–olefin metathesis: A key review. Org. Chem. Front. 2018, 5, 1381–1391. [Google Scholar] [CrossRef]
- Jehrod, B.B.; Stephen, F.M. Ring-Closing Metathesis as a Construct for the Synthesis of Polycyclic Alkaloids. Curr. Org. Chem. 2005, 9, 1535–1549. [Google Scholar] [CrossRef]
- Rosales, P.F.; Bordin, G.S.; Gower, A.E.; Moura, S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020, 143, 104558. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- Kukula-Koch, W.A.; Widelski, J. Chapter 9-Alkaloids. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 163–198. [Google Scholar] [CrossRef]
- Mohtar, M.; Johari, S.A.; Li, A.R.; Isa, M.M.; Mustafa, S.; Ali, A.M.; Basri, D.F. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA). Curr. Microbiol. 2009, 59, 181–186. [Google Scholar] [CrossRef]
- O’Donnell, G.; Gibbons, S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 2007, 21, 653–657. [Google Scholar] [CrossRef]
- Casciaro, B.; Calcaterra, A.; Cappiello, F.; Mori, M.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections. Toxins 2019, 11, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maneerat, W.; Phakhodee, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Laphookhieo, S. Antibacterial carbazole alkaloids from Clausena harmandiana twigs. Fitoterapia 2012, 83, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Maneerat, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Phakhodee, W.; Laphookhieo, S. Bioactive carbazole alkaloids from Clausena wallichii roots. J. Nat. Prod. 2012, 75, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Maneerat, W.; Phakhodee, W.; Cheenpracha, S.; Ritthiwigrom, T.; Deachathai, S.; Laphookhieo, S. Clausenawallines G-K, carbazole alkaloids from Clausena wallichii twigs. Phytochemistry 2013, 88, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules 2011, 16, 9651–9664. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Sana, M.; Shaheen, A.; Ismat, F.; Mahboob, S.; Rauf, W.; Mirza, O.; Iqbal, M.; Rahman, M. Restraining the multidrug efflux transporter STY4874 of Salmonella Typhi by reserpine and plant extracts. Lett. Appl. Microbiol. 2019, 69, 161–167. [Google Scholar] [CrossRef]
- Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des. 2013, 81, 484–490. [Google Scholar] [CrossRef]
- Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn. 2019, 37, 1307–1325. [Google Scholar] [CrossRef]
- Ponnusamy, K.; Ramasamy, M.; Savarimuthu, I.; Paulraj, M.G. Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand. J. Infect. Dis. 2010, 42, 500–505. [Google Scholar] [CrossRef]
- Aniszewski, T. CHAPTER 1-Definition, Typology and Occurrence of Alkaloids. In Alkaloids-Secrets of Life; Aniszewski, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–59. [Google Scholar] [CrossRef]
- Dai, J.; Dan, W.; Schneider, U.; Wang, J. beta-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem. 2018, 157, 622–656. [Google Scholar] [CrossRef]
- Darabpour, E.; Poshtkouhian Bavi, A.; Motamedi, H.; Seyyed Nejad, S.M. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. EXCLI J. 2011, 10, 252–263. [Google Scholar] [PubMed]
- Nicoletti, M.; Udengene Oguakwa, J.; Messana, I. On the alkaloids of two African Strychnos, Strychnos nigritana Bak and Strychnos barteri Sol. Carbon-13 NMR spectroscopy of nigritanins. Fitoterapia 1980, 51, 131–134. [Google Scholar]
- Husson, H.-P. Chapter 1 Simple Indole Alkaloids Including ß-Carbolines and Carbazoles. In The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, NY, USA, 1985; Volume 26, pp. 1–51. [Google Scholar]
- Witkop, B. Zur Konstitution des Yohimbins und seiner Abbauprodukte. Justus Lieb. Ann. d. Chem. 1943, 554, 83–126. [Google Scholar] [CrossRef]
- Miller, E.R.; Hovey, M.T.; Scheidt, K.A. A Concise, Enantioselective Approach for the Synthesis of Yohimbine Alkaloids. J. Am. Chem. Soc. 2020, 142, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 1988, 33, 144–147. [Google Scholar] [PubMed]
- Neyfakh, A.A.; Bidnenko, V.E.; Chen, L.B. Efflux-mediated multidrug resistance in Bacillus subtilis: Similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. USA 1991, 88, 4781–4785. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.P.; Botton, D.; Sagne, C.; Isambert, M.F.; Desnos, C.; Blanchard, V.; Raisman-Vozari, R.; Krejci, E.; Massoulie, J.; Gasnier, B. Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J. Exp. Biol. 1994, 196, 251–262. [Google Scholar]
- Jia, W.; Li, C.; Zhang, H.; Li, G.; Liu, X.; Wei, J. Prevalence of Genes of OXA-23 Carbapenemase and AdeABC Efflux Pump Associated with Multidrug Resistance of Acinetobacter baumannii Isolates in the ICU of a Comprehensive Hospital of Northwestern China. Int. J. Environ. Res. Public Health 2015, 12, 10079–10092. [Google Scholar] [CrossRef] [Green Version]
- Neyfakh, A.A.; Borsch, C.M.; Kaatz, G.W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 1993, 37, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Vecchione, J.J.; Alexander, B., Jr.; Sello, J.K. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob. Agents Chemother. 2009, 53, 4673–4677. [Google Scholar] [CrossRef] [Green Version]
- Godreuil, S.; Galimand, M.; Gerbaud, G.; Jacquet, C.; Courvalin, P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob. Agents Chemother. 2003, 47, 704–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floyd, J.L.; Smith, K.P.; Kumar, S.H.; Floyd, J.T.; Varela, M.F. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5406–5412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res. 2000, 14, 139–140. [Google Scholar] [CrossRef]
- Shaheen, A.; Afridi, W.A.; Mahboob, S.; Sana, M.; Zeeshan, N.; Ismat, F.; Mirza, O.; Iqbal, M.; Rahman, M. Reserpine Is the New Addition into the Repertoire of AcrB Efflux Pump Inhibitors. Mol. Biol. (Mosk) 2019, 53, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5’-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA 2000, 97, 1433–1437. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 810–812. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug Resistance Reversal Potential of Ursolic Acid Derivatives against Nalidixic Acid- and Multidrug-resistant Escherichia coli. Chem. Biol. Drug Des. 2015, 86, 272–283. [Google Scholar] [CrossRef]
- Genest, K. A direct densitometric method on thin-layer plates for the determination of lysergic acid amide, isolysergic acid amide and clavine alkaloids in morning glory seeds. J. Chromatogr. A 1965, 19, 531–539. [Google Scholar] [CrossRef]
- Maurya, A.; Verma, R.K.; Srivastava, S.K. Quantitative determination of bioactive alkaloids lysergol and chanoclavine in Ipomoea muricata by reversed-phase high-performance liquid chromatography. Biomed. Chromatogr. 2012, 26, 1096–1100. [Google Scholar] [CrossRef]
- Ponnusamy, K.; Petchiammal, C.; Mohankumar, R.; Hopper, W. In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br. J. Ethnopharmacol. 2010, 132, 349–354. [Google Scholar] [CrossRef]
- Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 2005, 8, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Laudadio, E.; Cedraro, N.; Mangiaterra, G.; Citterio, B.; Mobbili, G.; Minnelli, C.; Bizzaro, D.; Biavasco, F.; Galeazzi, R. Natural Alkaloid Berberine Activity against Pseudomonas aeruginosa MexXY-Mediated Aminoglycoside Resistance: In Silico and in Vitro Studies. J. Nat. Prod. 2019, 82, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Hamoud, R.; Reichling, J.; Wink, M. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria. Drug Metab. Lett. 2014, 8, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.G.; Kang, O.H.; Chae, H.S.; Obiang-Obounou, B.; Lee, Y.S.; Oh, Y.C.; Kim, M.S.; Shin, D.W.; Kim, J.A.; Kim, Y.H.; et al. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Appl. Biochem. Biotechnol. 2010, 160, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, H.E.; Tsai, C.H.; Ho, T.Y.; Hsieh, C.T.; Chou, S.C.; Lee, Y.J.; Tsay, G.J.; Huang, P.H.; Wu, Y.Y. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-kappaB and mitogen-activated protein kinase pathways. BMC Complement. Altern. Med. 2018, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Guzman, R.; Fulks, L.C.; Radwan, M.M.; Burandt, C.L.; Ross, S.A. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med. 2011, 77, 1542–1544. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.S.; Lins, M.O.; Le Hyaric, M.; Barros, T.F.; Velozo, E.S. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Brasileira Farmacogn. 2017, 27, 195–198. [Google Scholar] [CrossRef]
- Zuo, G.Y.; Meng, F.Y.; Hao, X.Y.; Zhang, Y.L.; Wang, G.C.; Xu, G.L. Antibacterial alkaloids from chelidonium majus linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Pharm. Pharm. Sci. 2008, 11, 90–94. [Google Scholar] [CrossRef]
- Zuo, G.Y.; Li, Y.; Wang, T.; Han, J.; Wang, G.C.; Zhang, Y.L.; Pan, W.D. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2011, 16, 9819–9826. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.Y.; Yang, H.-Q.; Tu, J.; Meng, Q.; Xiao, S.; Zhang, M.; Chen, Z. Separation and Activity against Drug-resistant Bacteria of Tetrandrine andFangchinoline in Lipophilic Akaloids from Stephania tetrandra. Der. Chem. Sinica 2017, 8, 298–304. [Google Scholar]
- Yin, S.; Rao, G.; Wang, J.; Luo, L.; He, G.; Wang, C.; Ma, C.; Luo, X.; Hou, Z.; Xu, G. Roemerine Improves the Survival Rate of Septicemic BALB/c Mice by Increasing the Cell Membrane Permeability of Staphylococcus aureus. PLoS ONE 2015, 10, e0143863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, F.G.; Atas, B.; Aksoy, C.S.; Kurpejovic, E.; Gulsoy Toplan, G.; Gurer, C.; Guillerminet, M.; Orelle, C.; Jault, J.-M.; Sariyar Akbulut, B. Repurposing bioactive aporphine alkaloids as efflux pump inhibitors. Fitoterapia 2019, 139, 104371. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Nakashima, K.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Y. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa. Front. Microbiol. 2016, 7, 1223. [Google Scholar] [CrossRef] [PubMed]
- Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3133–3141. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kumar, G.S.; Ray, A.; Maiti, M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J. Biomol. Struct. Dyn. 2003, 20, 703–714. [Google Scholar] [CrossRef]
- Bhadra, K.; Maiti, M.; Kumar, G.S. Berberine-DNA complexation: New insights into the cooperative binding and energetic aspects. Biochim. Biophys. Acta 2008, 1780, 1054–1061. [Google Scholar] [CrossRef]
- Yadav, R.C.; Kumar, G.S.; Bhadra, K.; Giri, P.; Sinha, R.; Pal, S.; Maiti, M. Berberine, a strong polyriboadenylic acid binding plant alkaloid: Spectroscopic, viscometric, and thermodynamic study. Bioorg. Med. Chem. 2005, 13, 165–174. [Google Scholar] [CrossRef]
- Domadia, P.N.; Bhunia, A.; Sivaraman, J.; Swarup, S.; Dasgupta, D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 2008, 47, 3225–3234. [Google Scholar] [CrossRef]
- Boberek, J.M.; Stach, J.; Good, L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS ONE 2010, 5, e13745. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Ye, X.G.; He, L.T.; Zhang, S.R.; Wang, R.L.; Zhou, J.; He, Z.S. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumoniae. J. Antibiot. (Tokyo) 2016, 69, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The Effects of Berberine and Palmatine on Efflux Pumps Inhibition with Different Gene Patterns in Pseudomonas aeruginosa Isolated from Burn Infections. Avicenna J. Med. Biotechnol. 2017, 9, 2–7. [Google Scholar] [PubMed]
- Su, F.; Wang, J. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp. Ther. Med. 2018, 15, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Laster, L.L.; Lobene, R.R. New perspectives on Sanguinaria clinicals: Individual toothpaste and oral rinse testing. J. Can. Dent. Assoc. 1990, 56, 19–30. [Google Scholar] [PubMed]
- Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 2005, 44, 16584–16593. [Google Scholar] [CrossRef]
- Obiang-Obounou, B.W.; Kang, O.H.; Choi, J.G.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Shin, D.W.; Kim, K.W.; Park, C.B.; Kim, Y.G.; et al. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus. J. Toxicol. Sci. 2011, 36, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Obiang-Obounou, B.W.; Kang, O.H.; Choi, J.G.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Shin, D.W.; Park, C.B.; Kim, Y.G.; Han, S.H.; et al. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis. 2011, 8, 869–874. [Google Scholar] [CrossRef]
- Parhi, A.; Lu, S.; Kelley, C.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of substituted dibenzo[a,g]quinolizin-7-ium derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 6962–6966. [Google Scholar] [CrossRef] [Green Version]
- Hamoud, R.; Reichling, J.; Wink, M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J. Pharm. Pharmacol. 2015, 67, 264–273. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 2015, 22, 245–255. [Google Scholar] [CrossRef]
- Hamoud, R.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 2014, 21, 443–447. [Google Scholar] [CrossRef]
- Navarro, V.; Delgado, G. Two antimicrobial alkaloids from Bocconia arborea. J. Ethnopharmacol. 1999, 66, 223–226. [Google Scholar] [CrossRef]
- Odebiyi, O.O.; Sofowora, E.A. Antimicrobial alkaloids from a Nigerian chewing stick (Fagara zanthoxyloides). Planta Med. 1979, 36, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Tavares Lde, C.; Zanon, G.; Weber, A.D.; Neto, A.T.; Mostardeiro, C.P.; Da Cruz, I.B.; Oliveira, R.M.; Ilha, V.; Dalcol, I.I.; Morel, A.F. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS ONE 2014, 9, e97000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, F.; Yang, X.J.; Zhou, L.; Hu, H.J.; Zheng, F.; Ding, X.D.; Sun, D.M.; Zhou, C.D.; Sun, W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 2011, 25, 863–875. [Google Scholar] [CrossRef]
- Khin, M.; Jones, A.M.; Cech, N.B.; Caesar, L.K. Phytochemical Analysis and Antimicrobial Efficacy of Macleaya cordata against Extensively Drug-Resistant Staphylococcus aureus. Nat. Prod. Commun. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 2002, 302, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Dubey, R.K.; Atal, C.K. Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: Evidence that piperine lowers the endogeneous UDP-glucuronic acid content. J. Pharmacol. Exp. Ther. 1986, 236, 488–493. [Google Scholar]
- Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2010, 65, 1694–1701. [Google Scholar] [CrossRef]
- Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J. Med. Microbiol. 2011, 60, 1472–1478. [Google Scholar] [CrossRef]
- Pan, X.; Bligh, S.W.; Smith, E. Quinolone alkaloids from Fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus. Phytother Res. 2014, 28, 305–307. [Google Scholar] [CrossRef]
- Hochfellner, C.; Evangelopoulos, D.; Zloh, M.; Wube, A.; Guzman, J.D.; McHugh, T.D.; Kunert, O.; Bhakta, S.; Bucar, F. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J. Appl. Microbiol. 2015, 118, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, N.; Ishii, E.; Tominaga, K.; Tezuka, Y.; Nagaoka, T.; Kadota, S.; Kuroki, T.; Yano, I. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu-Yu), against Helicobacter pylori in vitro. Microbiol. Immunol. 2000, 44, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, K.; Higuchi, K.; Hamasaki, N.; Hamaguchi, M.; Takashima, T.; Tanigawa, T.; Watanabe, T.; Fujiwara, Y.; Tezuka, Y.; Nagaoka, T.; et al. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori. J. Antimicrob. Chemother. 2002, 50, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, J.D.; Wube, A.; Evangelopoulos, D.; Gupta, A.; Hufner, A.; Basavannacharya, C.; Rahman, M.M.; Thomaschitz, C.; Bauer, R.; McHugh, T.D.; et al. Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: Antibacterial activity, molecular docking and inhibition kinetics. J. Antimicrob. Chemother. 2011, 66, 1766–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Plant Source | Number of CT | Medicinal Purposes | Ref. |
---|---|---|---|---|
Atropine (tropane) | Atropa belladonna, Hyoscyamus spp., Datura spp. | 241 | Myopia, Refractive Errors, Bradycardia, Arrhythmias, Ventilator-Associated Pneumonia, Nausea, Vomiting, Cataract, Mydriasis, Spinal Anesthesia, Anesthesia, Anesthesiology Management, Postoperative Nausea, Hypotension, Hypotension After Spinal Anesthesia, Cesarean Section Complications, Endotracheal Intubation Amblyopia, Sialorrhea, Organophosphorus Poisoning. | [35,36] |
Berberine (isoquinoline) | Berberis spp. | 50 | Colorectal Adenomas, Metabolic Syndrome, Schizophrenia, Coronary Artery Disease, Percutaneous Coronary Intervention, Ulcerative Colitis, Diabetes Mellitus, Chronic Kidney Disease, Gastritis, Peptic Ulcer, Dyspepsia, Type 2 Diabetes, Hypercholesterolemia, Nonalcoholic Fatty Liver Disease, Dyslipidemias, Prediabetes. | [37,38] |
Camptothecin (indole) | Camptotheca acuminata | 104 | Malignant Lymphoma of Extranodal and/or Solid Organ Site, Solid Tumor, Lymphomas, Lung Diseases, Cancer, Corpus Uteri, Urothelial Carcinoma, Endometrial Cancer, Colorectal Cancer, Adenocarcinoma of the Esophagus, Adenocarcinoma of the Gastroesophageal Junction, Diffuse Adenocarcinoma of the Stomach, Malignant Glioma, Breast Cancer, Gastric Cancer, Lung Cancer, Metastatic Cancer. | [36,37] |
Capsaicin (pseudo-alkaloid) | Capsicum annuum L. or C. minimum Mill | 224 | Pain, Neuropathic Pain, Cough, Cannabinoid Hyperemesis Syndrome, Spinal Cord Injuries, Sickle Cell Disease, Nonallergic Irritant Rhinitis, Pulmonary Hypertension, Irritable Bowel Syndrome, Colonic Diseases, Dyspepsia, Knee Osteoarthritis, Chemotherapy-induced Peripheral Neuropathy, Diabetic Nerve Problems, Diabetic Neuropathy, Diabetic Complications Neurological, Obesity, Insulin Resistance, Bronchiectasis, Rhinitis, Peripheral Nerve Injury, Postherpetic Neuralgia, Asthma, Migraine, Cluster Headache, Headache Disorders, Trigeminal Autonomic Cephalgia, HIV Infections, Peripheral Nervous System Diseases, Herpes Zoster, Alopecia Areata. | [39,40] |
Colchicine (pseudo-alkaloid) | Colchicum autumnale | 140 | Coronavirus Infections, Corona Virus Disease 19 (COVID 19), Essential Hypertension, Heart Diseases, Atrial Fibrillation, Cardiac Surgery, Colchicine Adverse Reaction, Colchicine Resistance, Colchicine Toxicity, Pericardial Effusion, Chagas Disease, Arrhythmia, Acute Myocardial Infarction, Coronary Artery Disease, Acute Coronary Syndrome, Atherosclerosis, Inflammation, Diabetes, Hypertriglyceridemia, Gout, Pericarditis, Stroke, Myocardium Injury, Myocardial Infarction, Myocardial Ischemia, Familial Mediterranean Fever, Cholangiocarcinoma, Gout Flare, Pneumonia Viral, Arthritis Rheumatoid, Chondrocalcinosis, Osteoarthritis, Diabetes Mellitus Type 2, Colchicine mechanism of action. | [41] |
Galantamine or Galanthamine (isoquinoline) | Galanthus woronowii, Galanthus nivalis, Galanthus caucasicus (Baker) Grossh. | 97 | Nicotine Addiction, Alzheimer Disease, Smoking, Schizophrenia, Major Depression, Bipolar Depression, Aphasia, Stroke, Cocaine Dependence, Dementia, Cognitive Impairment, Neurocognitive Disorders, Autism, Mental Disorders. | [36,40] |
Papaverine (isoquinoline) | Papaver somniferum L. | 17 | Kidney Cancer, Pediatrics Anesthesia and Vasospasm, Lung Non-Small Cell Carcinoma, Radial Artery Injury Prevention, Prostatic Hyperplasia, Prostate Cancer, Injury of Internal Mammary Artery, Complications Due to Coronary Artery Bypass Graft, Erectile Dysfunction. | [42] |
Piperine (piperidine) | Piper nigrum, Piper longum | 18 | Bladder Spasm, Malignant Neoplasm, Pain, Urinary Urgency, Deglutition Disorders, Chronic Kidney Diseases, Obesity. | [37,43] |
Quinine (quinolone) | Cinchona spp. | 67 | Obesity, Plasmodium Falciparum Malaria, Malaria, Severe Malaria, Anemia, Cocaine Use, Pharmacokinetics, HIV Infections. | [35,36] |
Reserpine (indole) | Rauwolfia spp. | 9 | Refractory Hypertension, Cocaine-Related Disorders, Substance-Related Disorders, Cardiovascular Diseases, Cerebrovascular Disorders, Heart Diseases, Hypertension, Schizophrenia, Parkinson’s Disease, Atherosclerosis, Hypercholesterolemia. | [35,36,37] |
Solamargine (steroidal glycoalkaloid) | Solanum spp. | 3 | Actinic Keratosis. | [40,44] |
Tetrandrine (isoquinoline) | Stephania tetrandra | 1 | Corona Virus Disease 2019, COVID-19. | [43] |
Vincristine (indole) | Catharanthus roseus (L.) G. Don | 885 | Kaposiform Hemangioendothelioma, Kasabach-Merritt Syndrome, Tufted Angioma, Sarcoma, Neuroblastoma, Acute Lymphoblastic Leukemia, Rhabdomyosarcoma, Vincristine Induced Peripheral Neuropathy, B Cell Lymphoma, Lymphoma, Leukemia, Hematologic Diseases, Medulloblastoma, Recurrent Adult Burkitt Lymphoma, Low Grade Glioma, Metastatic Malignant Uveal Melanoma, Multiple Myeloma and Plasma Cell Neoplasm, HIV-1 Infection, Diffuse Astrocytoma, Anaplastic Astrocytoma, Astrocytoma, Sarcoma Kaposi, Ewing Sarcoma, Wilms Tumor, AIDS-Related Lymphoma, Brain and Central Nervous System Tumors. | [37,42] |
Yohimbine (indole) | Rauwolfia serpentine | 39 | Parkinson Disease, Type 2 Diabetes, Erectile Dysfunction, Social Anxiety Disorder, Phobic Disorders, Post-Traumatic Stress Disorder, Involutional Depression, Major Depression, Opioid Use Disorder. | [45] |
Compound | Trade Name | Plant Source | Medicinal Purposes | Ref. |
---|---|---|---|---|
Atropine (tropane) | Atropen | Atropa belladonna, Hyoscyamus spp., Datura spp. | Spasmolytic agent for gastrointestinal tract, Pupil enlargement in eye. | |
Caffeine (purine) | Cafcit, Vivarin, Alert | Coffea arabica, Thea sinensis | Treatment of apnea of prematurity and bronchopulmonary dysplasia in infants, Central nervous system stimulant. | [35] |
Capsaicin (pseudo-alkaloid) | Qutenza | Capsicum annum L. or C. minimum Mill | Postherpetic neuralgia. | [40] |
Codeine (isoquinoline) | Tuzistra XR® | Papaver somniferum L. | Analgesic, antidiarrheal and antitussive activity. | [36,42] |
Colchicine (pseudo-alkaloid) | Colcrys, Mitigare | Colchicum autumnale L. | Gout, Familial Mediterranean Fever. | [40,42] |
Ephedrine (pseudo-alkaloid) | Primatene, Bronkaid | Ephedra spp. | Treatment of asthma, hay fever, narcolepsy and depression. | [35] |
Galantamine or Galanthamine (isoquinoline) | Reminyl®, Razadyne®, Nivalin® | Galanthus woronowii, Galanthus nivalis, Galanthus caucasicus (Baker) Grossh. | Treatment of dementia caused by Alzheimer’s disease and other central nervous system disorders. | [36,40,42] |
Morphine (isoquinoline) | Statex, Oramorph, Sevredol, MS Contin | Papaver somniferum L. | Analgesic activity, management of chronic, moderate to severe pain. | [36,46] |
Nicotine (pyridine) | Nicorette, Nicotrol | Nicotiana tabacum L. | Help for smoking cessation. | [36] |
Omacetaxine mepesuccinate or Homoharringtonine (isoquinoline) | Synribo, Ceflatonin® | Cephalotaxus harringtonia (Knight ex Forbes) K. Koch | Oncology, Chronic myeloid leukemia. | [40,47] |
Pilocarpine (imidazole) | Isopto Carpine, Salagen | Pilocarpus jaborandi Holmes | Treatment of Glaucoma, xerostomia and Sjogren’s syndrome. | [35,46] |
Quinine (quinolone) | Qualaquin, Quinate, Quinbisul | Cinchona spp. | Antimalarial drug. | [35,36] |
Reserpine (indole) | Raudixin, Serpalan, Serpasil | Rauwolfia spp. | Antihypertensive and antipsychotic. | [35,36,37] |
Scopolamine (tropane) | Transderm Scop, Kwells, Buscopan | Atropa belladonna, Hyoscyamus spp., Datura spp. | Antiemetic, anticholinergic and spasmolytic agent. | [35,36] |
Solamargine (steroidal glycoalkaloid) | Curaderm | Solanum spp. | Cancer chemotherapy. | [40,47] |
Vinblastine (indole) | Velban, Alkaban-AQ® | Catharanthus roseus (L.) G. Don | Chemotherapy medication for several types of cancer. | [35,36] |
Vincristine (indole) | Oncovin, Vincasar, Marqibo | Catharanthus roseus (L.) G. Don | Antineoplastic agent to treat various cancers. | [37,42] |
Common Name | Chemical Structure | Tested Microorganism | Antimicrobial Effect | Source | Ref. |
---|---|---|---|---|---|
β-Carbolines | |||||
Harmaline | MRSA | Efflux Pump Inhibitor | Species: Peganum harmala | [66] | |
Canthin-6-one | MRSA S. aureus | Growth inhibition | Species: Allium neapolitanum | [67] | |
8-Hydroxy-canthin-6-one | MRSA S. aureus | Growth inhibition | Species: Allium neapolitanum | [67] | |
Nigritanine | S. aureus | Growth inhibition | Species: African Strichnos | [68] | |
Carbazoles | |||||
Clausamine A | MRSA SK1 | Growth inhibition | Species: Clausena harmandiana | [69] | |
Clausamine B | MRSA SK1 | Growth inhibition | Species: Clausena harmandiana | [69] | |
Clausine F | MRSA SK1 | Growth inhibition | Species: Clausena harmandiana | [69] | |
2,7-dihydroxy-3-formyl- 1-(3’-methyl-2’-butenyl) carbazole | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [70] | |
Clausenawalline E | MRSA SK1 S. aureus | Growth inhibition | Species: Clausena wallichii | [70] | |
Clausenawalline G | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [71] | |
Clausenawalline H | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [71] | |
Clausenawalline I | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [71] | |
Clausenawalline J | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [71] | |
Clausenawalline K | MRSA SK1 | Growth inhibition | Species: Clausena wallichii | [71] | |
Mahanine | S. pneumoniae | Growth inhibition | Species: Murraya koenigii | [72] | |
Yohimbans | |||||
Reserpine | E. coli | Efflux Pump Inhibitor | Species: Rauwolfia serpentine | [73] | |
Clavines | |||||
Lysergol | E. coli | Efflux Pump Inhibitor | Species: Ipomoea muricata | [74,75] | |
Chanoclavine | E. coli | Efflux Pump Inhibitor | Species: Ipomoea muricata | [74,75] | |
17-O-3″,4″,5″-trimethoxybenzoyllysergol | E. coli | Efflux Pump Inhibitor | aryl semi-synthetic derivatives | [74] | |
17-O-3″-nitrobenzoyllysergol | E. coli | Efflux Pump Inhibitor | aryl semi-synthetic derivatives | [74] | |
Indirubin | S. aureus | Efflux Pump Inhibitor | Species: Wrightia tinctorial | [76] |
Common Name | Chemical Structure | Tested Microorganism | Antimicrobial Effect | Source | Ref. |
---|---|---|---|---|---|
Protoberberines | |||||
Berberine | MRSA MSSA P. aeruginosa | Efflux Pump Inhibitor, DNA-intercalating | Species: Berberis spp. | [100,101] | |
Benzophenanthredines | |||||
Sanguinarine | VRE S. epidermidis | DNA-intercalating | Species: Sanguinaria canadensis | [102] | |
6-Methoxy-dihydrosanguinarine | MRSA MSSA | Growth inhibition | Species: Hylomecon hylomeconoides | [103] | |
Chelerythrine | MRSA S. aureus ESBLs-SA | Protein biosynthesis inhibitor | Species: Toddalia asiatica | [104] | |
Bis-[6-(5,6-dihydro-chelerythrinyl)] ether | MRSA | Growth inhibition | Species: Zanthoxylum monophylum | [105] | |
6-ethoxy-chelerythrine | MRSA | Growth inhibition | Species: Zanthoxylum monophylum | [105] | |
Dihydrochelerythrine | S. aureus | Growth inhibition | Species: Zanthoxylum tingoassuiba | [106] | |
Dihydrosanguinarine | S. aureus | Growth inhibition | Species: Zanthoxylum tingoassuiba | [106] | |
N-methylcanadine | S. aureus | Growth inhibition | Species: Zanthoxylum tingoassuiba | [106] | |
6-Hydroxy-dihydrosanguinarine | MRSA | Growth inhibition | Species: Chelidonium maju | [107] | |
6-Hydroxy-dihydrochelerythrine | MRSA | Growth inhibition | Species: Chelidonium maju | [107] | |
Bisbenzylisoquinolines | |||||
Tetrandrine | MRSA, ESBL-producing E. coli | Growth inhibition | Species: Stephania tetrandra | [108,109] | |
Fangchinoline | MRSA, ESBL-producing E. coli | Growth inhibition | Species: Stephania tetrandra | [108,109] | |
Aporphines | |||||
Roemerine | S. aureus B. subtilis | Efflux Pump Inhibitor Membrane permeability enhancer | Species: Annona senegalensi, Turkish Papaver and Rollinialeptopetal | [110,111] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M.R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M.L.; et al. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules 2020, 25, 3619. https://doi.org/10.3390/molecules25163619
Casciaro B, Mangiardi L, Cappiello F, Romeo I, Loffredo MR, Iazzetti A, Calcaterra A, Goggiamani A, Ghirga F, Mangoni ML, et al. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules. 2020; 25(16):3619. https://doi.org/10.3390/molecules25163619
Chicago/Turabian StyleCasciaro, Bruno, Laura Mangiardi, Floriana Cappiello, Isabella Romeo, Maria Rosa Loffredo, Antonia Iazzetti, Andrea Calcaterra, Antonella Goggiamani, Francesca Ghirga, Maria Luisa Mangoni, and et al. 2020. "Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections" Molecules 25, no. 16: 3619. https://doi.org/10.3390/molecules25163619
APA StyleCasciaro, B., Mangiardi, L., Cappiello, F., Romeo, I., Loffredo, M. R., Iazzetti, A., Calcaterra, A., Goggiamani, A., Ghirga, F., Mangoni, M. L., Botta, B., & Quaglio, D. (2020). Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules, 25(16), 3619. https://doi.org/10.3390/molecules25163619