Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenols Determination of Hempseed Oil
2.2. Tocopherols Determination in Investigated Hemp Seed Oils
2.3. Essential Polyunsaturated Fatty Acids Ratio
2.4. Chlorophylls and Carotenoids in HS Oils under Study
2.5. Cannabidiolic Acid Content of Investigated Hemp Seed Oils
2.6. Quality Parameters Determination
2.7. Accelerated Photo-Oxidation Tests
3. Materials and Methods
3.1. Reagents and Materials
3.2. Sampling
3.3. Polyphenols and Fatty Acids Extraction
3.4. Determination of Total Phenolic Content (TPC)
3.5. α-Tocopherol Extraction and Determination
3.6. UHPLC-ESI-QqTOF-MS/MS Analysis for PUFAs Determination
3.7. Oil Pigment Determination
3.8. Cannabidiolic Content Determination
3.9. Quality Parameters Determination
3.9.1. Determination of Free Fatty Acids
3.9.2. Determination of Peroxide Value
3.9.3. Spectrophotometric Investigation in the Ultraviolet
3.10. Preparation of Samples for Accelerated Photo-Oxidation Tests
3.10.1. Determination of the Lipid Photostability
3.10.2. Thiobarbituric Acid Reactive Substances (TBARS) Determination
3.10.3. UV-Pectrophotometric Analyses
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharm. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the thousand and One Molecules. Front. Plant. Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.; Amaral, C.; Teixeira, N.; Correia-da-Silva, G. Cannabis sativa: Much more beyond Δ9-tetrahydrocannabinol. Pharmacol. Res. 2020, 157, 104822. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps. Front. Plant. Sci. 2019, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Citti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M.A.; Cannazza, G. Cannabinoid profiling of hemp seed oil by liquid chromatography coupled to high-resolution mass spectrometry. Front. Plant. Sci. 2019, 10, 120. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The composition of hemp seed oil and its potential as an important source of nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Deferne, J.-L.; Pate, D.W. Hemp seed oil: A source of valuable essential fatty acids. J. Int. Hemp Assoc. 1996, 3, 4–7. [Google Scholar]
- Kang, J.X. The Importance of Omega-6/Omega-3 Fatty Acid Ratio in Cell Function; Karger: Basel, Swizerland, 2003. [Google Scholar]
- Callaway, J.C.; Pate, D.W. Hempseed oil. In Gourmet and Health-Promoting Specialty Oils; AOCS PRESS: Urbana, IL, USA, 2009; pp. 185–213. [Google Scholar]
- Sharma, S.; Cheng, S.-F.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci. Tech. 2019, 91, 305–318. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.d.S.; Lannes, S.C.d.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Tech. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Virgin hemp seed oil: An interesting niche product. Eur. J. Lipid. Sci. Tech. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive leaf addition increases olive oil nutraceutical properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Faugno, S.; Piccolella, S.; Sannino, M.; Principio, L.; Crescente, G.; Baldi, G.M.; Fiorentino, N.; Pacifico, S. Can agronomic practices and cold-pressing extraction parameters affect phenols and polyphenols content in hempseed oils? Ind. Crops Prod. 2019, 130, 511–519. [Google Scholar] [CrossRef]
- Moccia, S.; Siano, F.; Russo, G.L.; Volpe, M.G.; La Cara, F.; Pacifico, S.; Piccolella, S.; Picariello, G. Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. Int. J. Food Sci. Nutr. 2019, 71, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Azzi, A. Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 2007, 43, 16–21. [Google Scholar] [CrossRef]
- Li, G.; Lee, M.-J.; Liu, A.B.; Yang, Z.; Lin, Y.; Shih, W.J.; Yang, C.S. The antioxidant and anti-inflammatory activities of tocopherols are independent of Nrf2 in mice. Free Radic. Biol. Med. 2012, 52, 1151–1158. [Google Scholar] [CrossRef]
- European Commission (EC). European Union Commission. Regulation EEC 2568/91. On the characteristics of olive oil and olive pomace and their analytical methods. J. Off. J. Euro. Comm. L 1991, 248, 1–81. [Google Scholar]
- Da Porto, C.; Decorti, D.; Tubaro, F. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Marín-Aguilar, F.; García-Giménez, M.D.; Fernández-Arche, M.A. Hemp (Cannabis sativa L.) Seed Oil: Analytical and Phytochemical Characterization of the Unsaponifiable Fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible Fedora cultivar hemp (Cannabis sativa L.). Molecules 2019, 24, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, E.; Crescente, G.; Formato, M.; Pecoraro, M.T.; Mallardo, M.; Piccolella, S.; Daniele, A.; Pacifico, S. Hempseed lignanamides rich-fraction: Chemical Investigation and cytotoxicity towards U-87 glioblastoma cells. Molecules 2020, 25, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crescente, G.; Piccolella, S.; Esposito, A.; Scognamiglio, M.; Fiorentino, A.; Pacifico, S. Chemical composition and nutraceutical properties of hempseed: An ancient food with actual functional value. Phytochem. Rev. 2018, 17, 733–749. [Google Scholar] [CrossRef]
- Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’Angelo, V.; Circosta, C. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L. Phytother. Res. 2016, 30, 1298–1307. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Teh, S.-S.; Birch, J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Compr. Rev. Food sci. F. 2020, 19, 282–308. [Google Scholar] [CrossRef] [Green Version]
- Dunford, N.T. Gourmet and Specialty Oils. Food Technol. 2017. Available online: https://shareok.org/bitstream/handle/11244/316238/oksd_fapc_211_2017-12.pdf?sequence=1 (accessed on 28 May 2020).
- Chen, T.; He, J.; Zhang, J.; Zhang, H.; Qian, P.; Hao, J.; Li, L. Analytical characterization of hempseed (seed of Cannabis sativa L.) oil from eight regions in China. J. Diet. Suppl. 2010, 7, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Rezvankhah, A.; Emam-Djomeh, Z.; Safari, M.; Askari, G.; Salami, M. Microwave-assisted extraction of hempseed oil: Studying and comparing of fatty acid composition, antioxidant activity, physiochemical and thermal properties with Soxhlet extraction. J. Food Sci. Tech. 2019, 56, 4198–4210. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Latif, S.; Ashraf, M. Analytical characterization of hemp (Cannabis sativa) seed oil from different agro-ecological zones of Pakistan. J. Am. Oil Chem. Soc. 2006, 83, 323–329. [Google Scholar] [CrossRef]
- Aladić, K.; Jokić, S.; Moslavac, T.; Tomas, S.; Vidović, S.; Vladić, J.; Šubarić, D. Cold pressing and supercritical CO2 extraction of hemp (Cannabis sativa) seed oil. Chem. Biochem. Eng. Q. 2014, 28, 481–490. [Google Scholar] [CrossRef]
- Blade, S.F.; Ampong-Nyarko, K.; Przybylski, R. Fatty acid and tocopherol profiles of industrial hemp cultivars grown in the high latitude prairie region of Canada. J. Ind. Hemp 2006, 10, 33–43. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J. Clean. Prod. 2019, 207, 645–657. [Google Scholar] [CrossRef]
- Yang, L.G.; Song, Z.X.; Yin, H.; Wang, Y.Y.; Shu, G.F.; Lu, H.X.; Wang, S.K.; Sun, G.J. Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids 2016, 51, 49–59. [Google Scholar] [CrossRef]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The performance and potentiality of monoecious hemp (Cannabis sativa L.) cultivars as a multipurpose crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Kiralan, M.; Gül, V.; Kara, S.M. Fatty acid composition of hempseed oils from different locatins in Turkey. Span. J. Agric. Res. 2010, 385–390. [Google Scholar] [CrossRef]
- Abdollahi, M.; Sefidkon, F.; Calagari, M.; Mousavi, A.; Mahomoodally, M.F. A comparative study of seed yield and oil composition of four cultivars of Hemp (Cannabis sativa L.) grown from three regions in northern Iran. Ind. Crops Prod. 2020, 152, 112397. [Google Scholar] [CrossRef]
- Ustun-Argon, Z. Phenolic Compounds, Antioxidant Activity and Fatty Acid Compositions of Commercial Cold-Pressed Hemp Seed (Cannabis Sativa L) Oils From Turkey. Int. J. Sci. Eng. Res. 2019, 10, 166–173. [Google Scholar]
- Apostol, L. Studies on using hemp seed as functional ingredient in the production of functional food products. J. Ecoagritourism 2017, 13, 12–17. [Google Scholar]
- Saastamoinen, M.; Eurola, M.; Hietaniemi, V. Oil, protein, chlorophyll, cadmium and lead contents of seeds in oil and fiber flax (Linum usitatissimum L.) cultivars and in oil hemp (Cannabis sativa L.) cultivar Finola cultivated in south-western part of Finland. J. Food Chem. Nanotechnol. 2016, 2, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Appukuttan Aachary, A.; Thiyam-Holländer, U. Hemp seed oil: Minor components and oil quality. Lipid Tech. 2015, 27, 231–233. [Google Scholar] [CrossRef]
- Aachary, A.A.; Liang, J.; Hydamaka, A.; Eskin, N.M.; Thiyam-Holländer, U. A new ultrasound-assisted bleaching technique for impacting chlorophyll content of cold-pressed hempseed oil. LWT-Food Sci. Tech. 2016, 72, 439–446. [Google Scholar] [CrossRef]
- Li, X.; Yang, R.; Lv, C.; Chen, L.; Zhang, L.; Ding, X.; Zhang, W.; Zhang, Q.; Hu, C.; Li, P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur. J. Lipid. Sci. Tech. 2019, 121, 1800078. [Google Scholar] [CrossRef]
- Borges, T.H.; Pereira, J.A.; Cabrera-Vique, C.; Lara, L.; Oliveira, A.F.; Seiquer, I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem. 2017, 215, 454–462. [Google Scholar] [CrossRef]
- Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 2002, 76, 33–43. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, nutritional quality and oxidative stability of cold-pressed Camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Roca, M. Change in the natural ratio between chlorophylls and carotenoids in olive fruit during processing for virgin olive oil. J. Am. Oil Chem. Soc. 2001, 78, 133–138. [Google Scholar] [CrossRef]
- Formato, M.; Crescente, G.; Scognamiglio, M.; Fiorentino, A.; Pecoraro, M.T.; Piccolella, S.; Catauro, M.; Pacifico, S. (−)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules 2020, 25, 2638. [Google Scholar] [CrossRef]
- European Commission (EC). Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods; European Union Commission: Brussels, Belgium, 2015; Volume 327, pp. 1–21. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32015R2283 (accessed on 28 May 2020).
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The antioxidant activity and oxidative stability of cold-pressed oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016.
- Al Jourdi, H.; Popescu, C.; Udeanu, D.I.; Arsene, A.; Sevastre, A.; Velescu, B.S.; Lupuliasa, D. Comparative study regarding the physico-chemical properties and microbiological activities of olea europaea l. Oil and cannabis sativa l. Seed oil obtained by cold pressing. Farmacia 2019, 67, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Grossi, M.; Palagano, R.; Bendini, A.; Riccò, B.; Servili, M.; García-González, D.L.; Toschi, T.G. Design and in-house validation of a portable system for the determination of free acidity in virgin olive oil. Food Cont. 2019, 104, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Ayora-Cañada, M.J. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. Phys. Lipids 2005, 134, 173–182. [Google Scholar] [CrossRef]
- Melo, T.; Maciel, E.; Reis, A.; Domingues, P.; Domingues, M.R.M. Mass Spectrometric Analysis of Lipid Hydroperoxides. In Lipidomics; Humana Press: New York, NY, USA, 2017; pp. 133–146. [Google Scholar]
- Guillaume, C.; De Alzaa, F.; Ravetti, L. Evaluation of chemical and physical changes in different commercial oils during heating. Acta Sci. Nutr. Health 2018, 2, 2–11. [Google Scholar]
- Mei, W.S.C.; Ismail, A.; Esa, N.M.; Akowuah, G.A.; Wai, H.C.; Seng, Y.H. The effectiveness of rambutan (Nephelium lappaceum L.) extract in stabilization of sunflower oil under accelerated conditions. Antioxidants 2014, 3, 371–386. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Commission Regulation (EC) no. 1989/2003, 6 November, Amending Regulation (EEC) no. 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis. Off. J. Eur. Union. 2003, 295, 57–77. [Google Scholar]
- Ayadi, M.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toxic. 2009, 47, 2613–2619. [Google Scholar] [CrossRef]
- Shi, X.-C.; Jin, A.; Sun, J.; Yang, Z.; Tian, J.-J.; Ji, H.; Yu, H.-B.; Li, Y.; Zhou, J.-S.; Du, Z.-Y. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus). Fish Shellfish. Immunol. 2017, 67, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor-Gerding, D.; Oomah, B.D.; Acevedo, F.; Morales, E.; Bustamante, M.; Shene, C.; Rubilar, M. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chem. 2016, 199, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Unicomb, A. Storage and Thermal Effects on the Oxidative Stability and Emulsion Characteristics of Hemp (Cannabis sativa L.) Oil-in-Water Emulsions. Master’s Thesis, Dalhousie University, Halifax, Nova Scotia, August 2017. [Google Scholar]
- Tenore, G.C.; Campiglia, P.; Ciampaglia, R.; Izzo, L.; Novellino, E. Antioxidant and antimicrobial properties of traditional green and purple “Napoletano” basil cultivars (Ocimum basilicum L.) from Campania region (Italy). Nat. Prod. Res. 2017, 31, 2067–2071. [Google Scholar] [CrossRef] [PubMed]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process. Saf. Environ. 2018, 113, 68–77. [Google Scholar] [CrossRef]
- Kumar, S.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Isabel Minguez-Mosquera, M.; Rejano-Navarro, L.; Gandul-Rojas, B.; SanchezGomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- European Commission (EC). European Commission implementing Regulation 2016/1227 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union. 2016, 202, 7–13. [Google Scholar]
- European Commission (EC). Commission Implementing Regulation (EU) 2016/1784 of 30 September 2016 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis C/2016/6207. Off. J. Eur. Union. 2016, 273, 5–9. [Google Scholar]
- European Commission (EC). European Commission implementing Regulation 2015/1833 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union. 2015, 26, 29–49. [Google Scholar]
- Abuzaytoun, R.; Shahidi, F. Oxidative stability of flax and hemp oils. J. Am. Oil Chem. Soc. 2006, 83, 855–861. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Ministerial Circular. Foods based on hemp. Minist. Health 2009, 2. Available online: http://www.federcanapa.it/wp-content/uploads/2016/07/Circolare_Miistero_della_Salute_22_maggio_2009___Produzione_e_commercializzazione_di_prodotti_a_base_di_semi_di_canapa_per_l__utilizzo_nei_settori_dell__alimentazione_umana-4.pdf (accessed on 28 May 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | Cvs. | TPC mg GAE/g |
---|---|---|
Oil 1 | Uso-31 | 32.5 ± 4.9 |
Oil 2 | Blend 1 | 160.8 ± 3.7 |
Oil 3 | Codimono | 48.9 ± 1.2 |
Oil 4 | Futura 75 | 69.2 ± 8.6 |
Oil 5 | Blend 2 | 58.2 ± 8.4 |
Oil 6 | Zenit | 36.7 ± 7.1 |
Oil 7 | Blend 3 | 36.1 ± 2.3 |
Oil 8 | Secuieni jubileu | 108.0 ± 0.1 |
Oil 9 | Uso-31 | 22.1 ± 0.3 |
Oil 10 | Felina 32 | 124.3 ± 18.4 |
Oil 11 | Blend 4 | 36.3 ± 4.8 |
Oil 12 | Blend 5 | 105.0 ± 11.4 |
Oil 13 | Futura 75 | 139.7 ± 14.8 |
Skewness | 0.6 | |
Kurtosis | −2.2 |
Sample | Variety | Tocopherols (mg/100 g) |
---|---|---|
Oil 1 | Uso-31 | 7.23 ± 0.47 |
Oil 2 | Blend 1 | 13.25 ± 0.18 |
Oil 3 | Codimono | 7.29 ± 0.20 |
Oil 4 | Futura 75 | 6.55 ± 0.50 |
Oil 5 | Blend 2 | 5.83 ± 0.34 |
Oil 6 | Zenit | 7.39 ± 0.02 |
Oil 7 | Blend 3 | 6.46 ± 0.58 |
Oil 8 | Secuieni jubileu | 3.47 ± 0.32 |
Oil 9 | Uso-31 | 6.25 ± 0.01 |
Oil 10 | Felina 32 | 6.54 ± 0.22 |
Oil 11 | Blend 4 | 7.42 ± 0.45 |
Oil 12 | Blend 5 | 7.84 ± 0.20 |
Oil 13 | Futura 75 | 8.23 ± 0.13 |
Skewness | 1.6 | |
Kurtosis | 5.7 |
Sample | Variety | Chlorophylls a + b (µg/g ± SD) | Carotenoids (µg/g ± SD) |
---|---|---|---|
Oil 1 | Uso-31 | 2.52 ± 0.27 | 0.82 ± 0.09 |
Oil 2 | Blend 1 | 4.81 ± 0.12 | 1.73 ± 0.04 |
Oil 3 | Codimono | 0.97 ± 0.08 | 0.30 ± 0.02 |
Oil 4 | Futura 75 | 0.45 ± 0.02 | 0.19 ± 0.00 |
Oil 5 | Blend 2 | 0.41 ± 0.02 | 0.15 ± 0.01 |
Oil 6 | Zenit | 0.85 ± 0.01 | 0.30 ± 0.01 |
Oil 7 | Blend 3 | 0.41 ± 0.06 | 0.18 ± 0.02 |
Oil 8 | Secuieni jubileu | 2.64 ± 0.76 | 0.69 ± 0.10 |
Oil 9 | Uso-31 | 0.78 ± 0.03 | 0.29 ± 0.01 |
Oil 10 | Felina 32 | 1.05 ± 0.07 | 0.44 ± 0.01 |
Oil 11 | Blend 4 | 0.86 ± 0.08 | 0.40 ± 0.03 |
Oil 12 | Blend 5 | 1.70 ± 0.19 | 0.61 ± 0.02 |
Oil 13 | Futura 75 | 0.97 ± 0.01 | 0.49 ± 0.01 |
Skewness | 1.9 | 2.3 | |
Kurtosis | 3.9 | 6.2 |
Sample | Variety | Acidity (%) | Peroxide Value (meq O2/kg) | Delta-k |
---|---|---|---|---|
Oil 1 | Uso-31 | 9.9 ± 0.08 | 6.5 ± 0.07 | 0.015± 0.003 |
Oil 2 | Blend 1 | 7.9 ± 0.01 | 4.2 ± 0.01 | 0.029 ± 0.002 |
Oil 3 | Codimono | 5.1 ± 0.09 | 1.8 ± 0.15 | 0.022 ± 0.001 |
Oil 4 | Futura 75 | 2.8 ± 0.06 | 6.8 ± 0.003 | 0.019 ± 0.001 |
Oil 5 | Blend 2 | 1.3 ± 0.01 | 5.3 ± 0.003 | 0.013 ± 0.003 |
Oil 6 | Zenit | 5.1 ± 0.01 | 6.3 ± 0.75 | 0.019 ± 0.002 |
Oil 7 | Blend 3 | 6.8 ± 0.08 | 4.8 ± 0.20 | 0.027 ± 0.001 |
Oil 8 | Secuieni jubileu | 4.9 ± 0.20 | 5.3 ± 0.50 | 0.029 ± 0.003 |
Oil 9 | Uso-31 | 6.2 ± 0.03 | 8.8 ± 0.07 | 0.020 ± 0.002 |
Oil 10 | Felina 32 | 2.1 ± 0.09 | 4.2 ± 0.30 | 0.047 ± 0.003 |
Oil 11 | Blend 4 | 8.0 ± 0.07 | 3.8 ± 0.25 | 0.023 ± 0.001 |
Oil 12 | Blend 5 | 1.7 ± 0.09 | 4.8 ± 0.15 | 0.024 ± 0.002 |
Oil 13 | Futura 75 | 3.0 ± 0.06 | 3.0 ± 0.08 | 0.020 ± 0.003 |
Skewness | 0.3 | 0.3 | 1.7 | |
Kurtosis | −1.9 | 0.7 | 4.4 |
Sample | t0 | t7 | ||
---|---|---|---|---|
K232 | K270 | K232 | K270 | |
Oil 1 | 0.86 ± 0.08 | 0.69 ± 0.07 | 0.86 ± 0.03 | 0.79 ± 0.05 |
Oil 2 | 0.84 ± 0.07 | 0.73 ± 0.04 | 0.88 ± 0.04 | 0.81 ± 0.06 |
Oil 3 | 0.84 ± 0.03 | 0.51 ± 0.02 | 0.88 ± 0.04 | 0.54 ± 0.04 |
Oil 4 | 0.84 ± 0.01 | 0.39 ± 0.05 | 0.87 ± 0.02 | 0.42 ± 0.05 |
Oil 5 | 0.82 ± 0.08 | 0.34 ± 0.01 | 0.82 ± 0.03 | 0.38 ± 0.02 * |
Oil 6 | 0.83 ± 0.03 | 0.40 ± 0.04 | 0.87 ± 0.02 | 0.44 ± 0.03 |
Oil 7 | 0.85 ± 0.04 | 0.54 ± 0.07 | 0.85 ± 0.03 | 0.56 ± 0.04 |
Oil 8 | 0.83 ± 0.03 | 0.65 ± 0.06 | 0.82 ± 0.04 | 0.70 ± 0.03 |
Oil 9 | 0.81 ± 0.02 | 0.46 ± 0.05 | 0.83 ± 0.03 | 0.47 ± 0.02 |
Oil 10 | 0.81 ± 0.05 | 0.50 ± 0.05 | 0.86 ± 0.03 | 0.63 ± 0.02 * |
Oil 11 | 0.86 ± 0.02 | 0.50 ± 0.04 | 0.87 ± 0.02 | 0.60 ± 0.02 * |
Oil 12 | 0.82 ± 0.01 | 0.47 ± 0.04 | 0.89 ± 0.04 * | 0.54 ± 0.03 |
Oil 13 | 0.83 ± 0.08 | 0.36 ± 0.02 | 0.88 ± 0.07 | 0.43 ± 0.01 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, L.; Pacifico, S.; Piccolella, S.; Castaldo, L.; Narváez, A.; Grosso, M.; Ritieni, A. Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil. Molecules 2020, 25, 3710. https://doi.org/10.3390/molecules25163710
Izzo L, Pacifico S, Piccolella S, Castaldo L, Narváez A, Grosso M, Ritieni A. Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil. Molecules. 2020; 25(16):3710. https://doi.org/10.3390/molecules25163710
Chicago/Turabian StyleIzzo, Luana, Severina Pacifico, Simona Piccolella, Luigi Castaldo, Alfonso Narváez, Michela Grosso, and Alberto Ritieni. 2020. "Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil" Molecules 25, no. 16: 3710. https://doi.org/10.3390/molecules25163710
APA StyleIzzo, L., Pacifico, S., Piccolella, S., Castaldo, L., Narváez, A., Grosso, M., & Ritieni, A. (2020). Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil. Molecules, 25(16), 3710. https://doi.org/10.3390/molecules25163710