Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions
Abstract
:1. Introduction
2. Results
3. Discussion
4. Experimental Section
4.1. General Information
4.2. Synthesis and Characterization of Products 2
4.3. Liquid-Phase Synthesis and Characterization of 3a
4.4. Mechanochemical Synthesis of 2a from 3a
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Friščić, T.; Mottillo, C.; Titi, H.M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 2020, 59, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-E.; Li, F.; Wang, G.-W. Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 2013, 42, 7535–7570. [Google Scholar] [CrossRef] [PubMed]
- Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649–7659. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-W. Mechanochemistry organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7770. [Google Scholar] [CrossRef] [PubMed]
- Beillard, A.; Bantreil, X.; Métro, T.-X.; Martines, J.; Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev. 2019, 119, 7529–7609. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, H.-W.; Lin, H.-S.; Wang, G.-W. Solvent-free iodine-promoted synthesis of 3,2′-pyrrolinyl spirooxindoles from alkylidene oxindoles and enamino esters under ball-milling conditions. Chem. Commun. 2017, 53, 12477–12480. [Google Scholar] [CrossRef]
- Xu, H.; Fan, G.-P.; Liu, Z.; Wang, G.-W. Catalyst- and solvent-free mechanochemical synthesis of isoxazoles from N-hydroxybenzimidoyl chlorides and enamino carbonyl compounds. Tetrahedron 2018, 74, 6607–6611. [Google Scholar] [CrossRef]
- Xu, H.; Liu, H.-W.; Chen, K.; Wang, G.-W. One-pot multicomponent mechanosynthesis of polysubstituted trans-2,3-dihydropyrroles and pyrroles from amines, alkyne esters, and chalcones. J. Org. Chem. 2018, 83, 6035–6049. [Google Scholar] [CrossRef]
- Xu, H.; Chen, K.; Liu, H.-W.; Wang, G.-W. Solvent-free N-iodosuccinimide-promoted synthesis of spiroimidazolines from alkenes and amidines under ball-milling conditions. Org. Chem. Front. 2018, 5, 2864–2869. [Google Scholar] [CrossRef]
- Liu, H.-W.; Xu, H.; Shao, G.; Wang, G.-W. Zinc-mediated reductive cyclization of [60]fullerene with enones and subsequent dehydration under solvent-free and ball-milling conditions. Org. Lett. 2019, 21, 2625–2628. [Google Scholar] [CrossRef]
- Cao, Q.; Stark, R.T.; Fallis, I.A.; Browne, D.L. A ball-milling-enabled Reformatsky reaction. ChemSusChem 2019, 12, 2554–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.X.; Stark, R.T.; Fallis, I.A.; Browne, D.L. A mechanochemical zinc-mediated Barbier-type allylation reaction under ball-milling conditions. J. Org. Chem. 2020, 85, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.G.; Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem. 2017, 82, 4007–4019. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci. 2018, 9, 3080–3094. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 1997, 387, 583–586. [Google Scholar] [CrossRef]
- Keshavarz-K, M.; Knight, B.; Srdanov, G.; Wudl, F. Cyanodihydrofullerenes and dicyanodihydrofullerene: The first polar solid based on C60. J. Am. Chem. Soc. 1995, 117, 11371–11372. [Google Scholar] [CrossRef]
- Su, Y.-T.; Wang, G.-W. FeCl3-mediated cyclization of [60]fullerene with N-benzhydryl sulfonaides under high-speed vibration milling conditions. Org. Lett. 2013, 15, 3408–3411. [Google Scholar] [CrossRef]
- Turberg, M.; Ardila-Fierro, K.J.; Bolm, C.; Hzmández, J.G. Altering copper-catalyzed A3 couplings by mechanochemistry: One-pot synthesis of 1,4-diamino-2-butynes from aldehydes, amines, and calcium carbide. Angew. Chem. Int. Ed. 2018, 57, 10718–10722. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, D.; Sum, Y.N.; Zhang, Y. Synthesis of functional acetylene derivatives from calcium carbide. ChemSusChem 2012, 5, 625–628. [Google Scholar] [CrossRef]
- Rodygin, K.S.; Werner, G.; Kucherov, F.A.; Ananikov, V.P. Calcium carbide: A unique reagent for organic synthesis and nanotechnology. Chem. Asian J. 2016, 11, 965–976. [Google Scholar] [CrossRef]
- Hosseini, A.; Seidel, D.; Miska, A.; Schreiner, P.R. Fluoride-assisted activation of calcium carbide: A simple method for the ethynylation of aldehydes and ketones. Org. Lett. 2015, 17, 2808–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Chen, Y.; Huang, W.; Wu, W.; Jiang, H. One-pot synthesis of spirocyclic or fused pyrazoles from cyclic ketones: Calcium carbide as the carbon source in ring expansion. J. Org. Chem. 2017, 82, 9479–9486. [Google Scholar] [CrossRef] [PubMed]
- Voronin, V.V.; Ledovskaya, M.S.; Gordeev, E.G.; Rodygin, K.S.; Ananikov, V.P. [3 + 2]-Cycloaddition of in situ generated nitrile imines and acetylene for assembling of 1,3-disubstituted pyrazoles with quantitative deuterium labeling. J. Org. Chem. 2018, 83, 3819–3828. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Li, Z. Direct synthesis of 2-methylbenzofurans from calcium carbide and salicylaldehyde p-tosylhydrazones. Org. Lett. 2018, 20, 2342–2345. [Google Scholar] [CrossRef]
- Zhao, G.; Liang, L.; Wen, C.H.E.; Tong, R. In situ generation of nitrile oxides from NaCl-Oxone oxidation of various aldoximes and their 1,3-dipolar cycloaddition. Org. Lett. 2019, 21, 315–319. [Google Scholar] [CrossRef]
- Friščić, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: A solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11, 418–426. [Google Scholar] [CrossRef]
- Bose, D.S.; Srinivas, P. Oxidative cleavage of oximes with peroxymonosulfate ion. Synth. Commun. 1997, 27, 3835–3838. [Google Scholar] [CrossRef]
- Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. One-step conversion of oximes to gem-chloro-nitro derivatives. Tetrahedron Lett. 1998, 39, 4385–4386. [Google Scholar] [CrossRef]
- Chiang, Y.H. Chlorination of oximes. I. Reaction and mechanism of the chlorination of oximes in commercial chloroform and methylene chloride. J. Org. Chem. 1971, 36, 2146–2155. [Google Scholar] [CrossRef]
- Chiang, Y.H. Chlorination of oximes. II. Pyrolysis of benzhydroxamic chloride derivatives. J. Org. Chem. 1971, 36, 2155–2158. [Google Scholar] [CrossRef]
- Hansen, E.C.; Levent, M.; Connolly, T.J. Safe and scaleable oxidation of benzaldoximes to benzohydroximinoyl chlorides. Org. Process Res. Dev. 2010, 14, 574–578. [Google Scholar] [CrossRef]
- Kanemasa, S.; Matsuda, H.; Kamimura, A.; Kakinami, T. Synthesis of hydroximoyl chlorides from aldoximes and benzyltrimethylammonium tetrachloroiodate (BTMA ICl4). Tetrahedron 2000, 56, 1057–1064. [Google Scholar] [CrossRef]
- Liu, X.; Shao, R.L.; Huang, R.Q. An efficient method for the synthesis of aliphatic α-organothio aldoximes. Chin. Chem. Lett. 1999, 10, 97–98. [Google Scholar]
Sample Availability: Not available. |
Entry | NaCl (equiv.) | Oxidant (equiv.) | Base (equiv.) | Yield of 2a (%) b |
---|---|---|---|---|
1 | 2.0 | Oxone (2.0) | Na2CO3 (2.0) | 23 c |
2 | 2.0 | Oxone (2.0) | Na2CO3 (2.0) | 24 |
3 | 2.0 | K2S2O8 (2.0) | Na2CO3 (2.0) | trace |
4 | 2.0 | Na2S2O8 (2.0) | Na2CO3 (2.0) | trace |
5 | 2.0 | (NH4)2S2O8 (2.0) | Na2CO3 (2.0) | 0 |
6 | 2.0 | BQ (2.0) | Na2CO3 (2.0) | trace |
7 | 2.0 | PhI(OAc)2 (2.0) | Na2CO3 (2.0) | trace |
8 | 2.0 | Oxone (2.0) | NaHCO3 (2.0) | 10 |
9 | 2.0 | Oxone (2.0) | NaOAc (2.0) | 6 |
10 | 2.0 | Oxone (2.0) | NaOtBu (2.0) | 12 |
11 | 2.0 | Oxone (2.0) | KOtBu (2.0) | 14 |
12 | 2.0 | Oxone (2.0) | Cs2CO3 (2.0) | 9 |
13 | 2.0 | Oxone (2.0) | DBU (2.0) | 0 |
14 | 2.0 | Oxone (2.0) | DMAP (2.0) | 0 |
15 | 2.0 | Oxone (2.0) | DABCO (2.0) | 0 |
16 | 2.0 | Oxone (1.0) | Na2CO3 (2.0) | 7 |
17 | 2.0 | Oxone (3.0) | Na2CO3 (2.0) | 41 |
18 | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | 57 |
19 | 2.0 | Oxone (5.0) | Na2CO3 (2.0) | 46 |
20 | 2.0 | Oxone (4.0) | Na2CO3 (1.0) | 35 |
21 | 2.0 | Oxone (4.0) | Na2CO3 (3.0) | 29 |
22 | 1.0 | Oxone (4.0) | Na2CO3 (2.0) | 39 |
23 | 3.0 | Oxone (4.0) | Na2CO3 (2.0) | 43 |
24 d | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | 48 |
25 e | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | 37 |
26 f,g | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | 40 |
27 f,h | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | trace |
28 f,i | 2.0 | Oxone (4.0) | Na2CO3 (2.0) | 45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Niu, C.; Wang, G.-W. Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions. Molecules 2020, 25, 3719. https://doi.org/10.3390/molecules25163719
Chen K, Niu C, Wang G-W. Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions. Molecules. 2020; 25(16):3719. https://doi.org/10.3390/molecules25163719
Chicago/Turabian StyleChen, Kuan, Chuang Niu, and Guan-Wu Wang. 2020. "Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions" Molecules 25, no. 16: 3719. https://doi.org/10.3390/molecules25163719
APA StyleChen, K., Niu, C., & Wang, G. -W. (2020). Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions. Molecules, 25(16), 3719. https://doi.org/10.3390/molecules25163719