Effect of Reducing Agent on Solution Synthesis of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of Li3V2(PO4)3 Powders
2.2. Material Characterization Methods
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mauger, A.; Julien, C.; Paolella, A.; Armand, M.; Zaghib, K. Recent progress on organic electrodes materials for rechargeable batteries and supercapacitors. Materials 2019, 12, 1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef] [PubMed]
- Dickens, P.G.; French, S.J.; Hight, A.T.; Pye, M.F. Phase relationships in the ambient temperature LixV2O5 system (0.1 < x < 1.0). Mater. Res. Bull. 1979, 14, 1295–1299. [Google Scholar]
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K.J.M. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [Green Version]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J. Electrochem. Soc. 2003, 150, A1394–A1398. [Google Scholar] [CrossRef]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. J. Power Sources 2010, 195, 5768–5774. [Google Scholar] [CrossRef]
- Nagarathinam, M.; Saravanan, K.; Phua, E.J.H.; Reddy, M.V.; Chowdari, B.V.R.; Vittal, J.J. Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries. Angew. Chem. Int. Ed. 2012, 51, 5866–5870. [Google Scholar] [CrossRef]
- Hameed, A.S.; Nagarathinam, M.; Schreyer, M.; Reddy, M.V.; Chowdari, B.V.R.; Vittal, J.J. A layered oxalatophosphate framework as a cathode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5721–5726. [Google Scholar] [CrossRef]
- Hameed, A.S.; Reddy, M.V.; Nagarathinam, M.; Runčevski, T.; Dinnebier, R.E.; Adams, S.; Chowdari, B.V.R.; Vittal, J.J. Room temperature large-scale synthesis of layered frameworks as low-cost 4V cathode materials for lithium ion batteries. Sci. Rep. 2015, 5, 16270. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.S.; Reddy, M.V.; Sarkar, N.; Chowdari, B.V.R.; Vittal, J.J. Synthesis and electrochemical investigation of novel phosphite based layered cathodes for Li-ion batteries. RSC Adv. 2015, 5, 60630–60637. [Google Scholar] [CrossRef]
- Shahul Hameed, A.; Nagarathinam, M.; Reddy, M.V.; Chowdari, B.V.R.; Vittal, J.J. Synthesis and electrochemical studies of layer-structured metastable alpha I-LiVOPO4. J. Mater. Chem. 2012, 22, 7206–7213. [Google Scholar] [CrossRef]
- Saidi, M.Y.; Barker, J.; Huang, H.; Swoyer, J.L.; Adamson, G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem. Solid State Lett. 2002, 5, A149–A151. [Google Scholar] [CrossRef]
- Sakunthala, A.; Reddy, M.V.; Selvasekarapandian, S.; Chowdari, B.V.R.; Selvin, P.C. Preparation, Characterization, and Electrochemical Performance of Lithium Trivanadate Rods by a Surfactant-Assisted Polymer Precursor Method for Lithium Batteries. J. Phys. Chem. C 2010, 114, 8099–8107. [Google Scholar] [CrossRef]
- Tan, H.; Xu, L.; Geng, H.; Rui, X.; Li, C.; Huang, S. Nanostructured Li3V2(PO4)3 Cathodes. Small 2018, 14, 1800567. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Massé, R.; Nan, X.; Cao, G. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 2016, 4, 15–58. [Google Scholar] [CrossRef] [Green Version]
- Rui, X.; Yan, Q.; Skyllas-Kazacos, M.; Lim, T.M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 2014, 258, 19–38. [Google Scholar] [CrossRef]
- Membreño, N.; Park, K.; Goodenough, J.B.; Stevenson, K.J. Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive. Chem. Mater. 2015, 27, 3332–3340. [Google Scholar] [CrossRef]
- Pei, B.; Jiang, Z.; Zhang, W.; Yang, Z.; Manthiram, A. Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries. J. Power Sources 2013, 239, 475–482. [Google Scholar] [CrossRef]
- Gaubicher, J.; Wurm, C.; Goward, G.; Masquelier, C.; Nazar, L. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries. Chem. Mater. 2000, 12, 3240–3242. [Google Scholar] [CrossRef]
- Yu, S.; Mertens, A.; Kungl, H.; Schierholz, R.; Tempel, H.; Eichel, R.-A. Morphology Dependency of Li3V2(PO4)3/C Cathode Material Regarding to Rate Capability and Cycle Life in Lithium-ion Batteries. Electrochim. Acta 2017, 232, 310–322. [Google Scholar] [CrossRef]
- Zhang, X.; Kühnel, R.-S.; Hu, H.; Eder, D.; Balducci, A. Going nano with protic ionic liquids—The synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 2015, 12, 207–214. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Deb, A.; Yang, C.; Yang, L.; Hirano, S.-I. Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries. Electrochim. Acta 2014, 143, 297–304. [Google Scholar] [CrossRef]
- Son, J.N.; Kim, S.H.; Kim, M.C.; Kim, G.J.; Aravindan, V.; Lee, Y.G.; Lee, Y.S. Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+ and Cl− substitutions. Electrochim. Acta 2013, 97, 210–215. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, Q.; Tan, S.; Zhao, L. Improved electrochemical properties of the Li3V2(PO4)3 cathode material synthesized from a V(III) precursor. J. Alloy. Compd. 2019, 802, 583–590. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, J.; Chen, Z.; Zhong, J.; Gu, N.; Zhang, N. Sol–gel-assisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. RSC Adv. 2015, 5, 17924–17930. [Google Scholar] [CrossRef]
- Wang, L.; Bai, J.; Gao, P.; Wang, X.; Looney, J.P.; Wang, F. Structure Tracking Aided Design and Synthesis of Li3V2(PO4)3 Nanocrystals as High-Power Cathodes for Lithium Ion Batteries. Chem. Mater. 2015, 27, 5712–5718. [Google Scholar] [CrossRef]
- Guo, S.; Bai, Y.; Geng, Z.; Wu, F.; Wu, C. Facile synthesis of Li3V2(PO4)3/C cathode material for lithium-ion battery via freeze-drying. J. Energy Chem. 2019, 32, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.-L.; Xue, Y.; Liu, B.-S.; Zhou, Y.-X.; Hao, S.-E.; Wang, Z.-B. High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries. Ceram. Int. 2017, 43, 4950–4956. [Google Scholar] [CrossRef]
- Xi, Y.; Zhang, Y.; Su, Z. Microwave synthesis of Li3V2(PO4)3/C as positive-electrode materials for rechargeable lithium batteries. J. Alloy. Compd. 2015, 628, 396–400. [Google Scholar] [CrossRef]
- Ou, Q.-Z.; Tang, Y.; Zhong, Y.-J.; Guo, X.-D.; Zhong, B.-H.; Heng, L.; Chen, M.-Z. Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochim. Acta 2014, 137, 489–496. [Google Scholar] [CrossRef]
- Hameed, A.S.; Reddy, M.V.; AlQaradawi, S.Y.; Adams, S. Synthesis, structural and lithium storage studies of graphene-LiVSi2O6 composites. Ionics 2019, 25, 1559–1566. [Google Scholar] [CrossRef]
- Tan, T.Q.; Idris, M.S.; Osman, R.A.M.; Reddy, M.V.; Chowdari, B.V.R. Structure and electrochemical behaviour of LiNi0.4Mn0.4Co0.2O2 as cathode material for lithium ion batteries. Solid State Ion. 2015, 278, 43–48. [Google Scholar] [CrossRef]
- Dai, C.; Chen, Z.; Jin, H.; Hu, X. Synthesis and performance of Li3(V1−xMgx)2(PO4)3 cathode materials. J. Power Sources 2010, 195, 5775–5779. [Google Scholar] [CrossRef]
- Shin, H.C.; Cho, W.I.; Jang, H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J. Power Sources 2006, 159, 1383–1388. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhao, N.; Guo, F.-F. Impact of carbon coating thickness on the electrochemical properties of Li3V2(PO4)3/C composites. Russ. J. Electrochem. 2017, 53, 339–344. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Liu, J.; Yang, G.; Ge, Y.; Yu, Z.; Wang, R.; Pan, X. Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source. Electrochim. Acta 2010, 55, 6879–6884. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Chen, T.; Xia, X.; Zhang, L.-C.; Zhang, J.; Xia, Y. Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. J. Alloy. Compd. 2019, 791, 296–306. [Google Scholar] [CrossRef]
- He, W.; Zhang, X.; Jin, C.; Wang, Y.; Mossin, S.; Yue, Y. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries. J. Power Sources 2017, 342, 717–725. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Adv. 2014, 4, 58090–58100. [Google Scholar] [CrossRef]
- Li, F.-T.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 2015, 7, 17590–17610. [Google Scholar] [CrossRef] [PubMed]
- Haghi, Z.; Masoudpanah, S.M. Technology, CTAB-assisted solution combustion synthesis of LiFePO4 powders. J. Sol. Gel. Sci. Technol. 2019, 91, 335–341. [Google Scholar] [CrossRef]
- Erri, P.; Pranda, P.; Varma, A. Oxidizer−Fuel Interactions in Aqueous Combustion Synthesis. 1. Iron(III) Nitrate−Model Fuels. Ind. Eng. Chem. Res. 2004, 43, 3092–3096. [Google Scholar] [CrossRef]
- Liu, X.; Feng, X.; Xu, X.; Wang, F.; Wang, Y.J.J. Technology, Sol-assisted spray-drying synthesis of porous Li3V2(PO4)3/C microspheres as high-activity cathode materials for lithium-ion batteries. J. Sol. Gel. Sci. Technol. 2018, 86, 343–350. [Google Scholar] [CrossRef]
- Morcrette, M.; Leriche, J.-B.; Patoux, S.; Wurm, C.; Masquelier, C. In Situ X-Ray Diffraction during Lithium Extraction from Rhombohedral and Monoclinic Li3V2( PO4) 3. Electrochem. Solid State Lett. 2003, 6, A80–A84. [Google Scholar] [CrossRef]
- Yu, S.; Mertens, A.; Schierholz, R.; Gao, X.; Aslanbas, Ö.; Mertens, J.; Kungl, H.; Tempel, H.; Eichel, R.-A. An Advanced All Phosphate Lithium-Ion Battery Providing High Electrochemical Stability, High Rate Capability and Long-Term Cycling Performance. J. Electrochem. Soc. 2017, 164, A370–A379. [Google Scholar] [CrossRef]
- Xu, W.; Liu, L.; Guo, H.; Guo, R.; Wang, C. Synthesis and electrochemical properties of Li3V2(PO4)3/C cathode material with an improved sol–gel method by changing pH value. Electrochim. Acta 2013, 113, 497–504. [Google Scholar] [CrossRef]
- Hameed, A.S.; Reddy, M.V.; Chowdari, B.V.R.; Vittal, J.J. Carbon coated Li3V2(PO4)3 from the single-source precursor, Li2(VO)2(HPO4)2(C2O4).6H2O as cathode and anode materials for Lithium ion batteries. Electrochim. Acta 2014, 128, 184–191. [Google Scholar] [CrossRef]
- Hu, G.; Gan, Z.; Cao, Y.; Peng, Z.; Lu, Y.; Du, K. Multi-level carbon co-modified LiVPO4F cathode material for lithium batteries. J. Alloy. Compd. 2019, 788, 1146–1153. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Zhao, Y.; Tsui, K.-L.; Bae, S.J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 2018, 145, 486–495. [Google Scholar] [CrossRef]
- Yan, J.; Fang, H.; Jia, X.; Wang, L. Copper incorporated in Li3V2(PO4)3/C cathode materials and its effects on high-rate Li-ion batteries. J. Alloy. Compd. 2018, 730, 103–109. [Google Scholar] [CrossRef]
- Xia, A.; Huang, J.; Tan, G.; Ren, H. Synthesis and electrochemical properties of W-doped Li3V2(PO4)3/C cathode materials for lithium ion batteries. Ceram. Int. 2014, 40, 14845–14850. [Google Scholar] [CrossRef]
- Cao, Z.; Fang, T.; Hou, X.; Niu, J. In-situ preparation of nitrogen-doped carbon-modified lithium vanadium phosphate fibers with mesoporous nanostructure for lithium energy storage. Ceram. Int. 2019, 45, 14474–14478. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, S.; Hojamberdiev, M.; Ren, B.; Xu, Y.; Shao, C. Effect of Ni doping on electrochemical performance of Li3V2(PO4)3/C cathode material prepared by polyol process. Ceram. Int. 2014, 40, 11251–11259. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Du, X.; He, W.; Zhang, X.; Yue, Y.; Liu, H.; Zhang, X.; Min, D.; Ge, X.; Du, Y. Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J. Mater. Chem. 2012, 22, 5960–5969. [Google Scholar] [CrossRef]
- Jiang, S. Fabrication and characterization of plate-like Li3V2(PO4)3@C as cathode material for energy storage. Solid State Ion. 2018, 325, 128–132. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Li, H.; Ping, N.; Zhang, X. Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. J. Electroanal. Chem. 2016, 762, 1–6. [Google Scholar] [CrossRef]
- Li, W.; Zheng, H.; Chu, G.; Luo, F.; Zheng, J.; Xiao, D.; Li, X.; Gu, L.; Li, H.; Wei, X.; et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: A top view investigation. Faraday Discuss. 2014, 176, 109–124. [Google Scholar] [CrossRef]
- Tang, S.B.; Lai, M.O.; Lu, L. Li-ion diffusion in highly (003) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. J. Alloy. Compd. 2008, 449, 300–303. [Google Scholar] [CrossRef]
- Das, B.; Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Nano-phase tin hollandites, K-2(M2Sn6)O-16 (M = Co, In) as anodes for Li-ion batteries. J. Mater. Chem. 2011, 21, 1171–1180. [Google Scholar] [CrossRef]
- Reddy, M.V.; Jose, R.; Le Viet, A.; Ozoemena, K.I.; Chowdari, B.V.R.; Ramakrishna, S. Studies on the lithium ion diffusion coefficients of electrospun Nb 2O5 nanostructures using galvanostatic intermittent titration and electrochemical impedance spectroscopy. Electrochim. Acta 2014, 128, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.V.; Prithvi, G.; Loh, K.P.; Chowdari, B.V.R. Li storage and impedance spectroscopy studies on Co3O 4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 680–690. [Google Scholar] [CrossRef]
- Reddy, M.V.; Wen, B.L.W.; Loh, K.P.; Chowdari, B.V.R. Energy Storage Studies on InVO4 as High Performance Anode Material for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 7777–7785. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K.J.M. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef]
Material | Synthesis Method | Capacity (mAh g−1, at 1C Rate | Retention (%) | Reference |
---|---|---|---|---|
Li3V2(PO4)3/RGO | Solvothermal | 128, 1C | 98 | [18] |
Li3V2(PO4)3/C | Solvothermal | 112, 1C | 97 | [20] |
Li3V2(PO4)3 in carbon matrix | Solvothermal | 122, 1C | 100 | [21] |
Li3V2(PO4)3/C | Microemulsion | 130, 1C | 97 | [22] |
Li3V2(PO4)3/C | Solution synthesis | 130, 0.2C | 93 | [24] |
Li3V2(PO4)3/C | Solvothermal | 122, 1.5C | 98 | [26] |
Li3V2(PO4)3/C | Freeze-drying | 130, 0.1C | 98 | [27] |
Li3V2(PO4)3/C | Microwave | 130, 1C | 99 | [29] |
Li3V2(PO4)3/C | Solution synthesis | 124, 1C | 98 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghtin, A.; Masoudpanah, S.M.; Hasheminiasari, M.; Salehi, A.; Safanama, D.; Ong, C.K.; Adams, S.; Reddy, M.V. Effect of Reducing Agent on Solution Synthesis of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. Molecules 2020, 25, 3746. https://doi.org/10.3390/molecules25163746
Yaghtin A, Masoudpanah SM, Hasheminiasari M, Salehi A, Safanama D, Ong CK, Adams S, Reddy MV. Effect of Reducing Agent on Solution Synthesis of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. Molecules. 2020; 25(16):3746. https://doi.org/10.3390/molecules25163746
Chicago/Turabian StyleYaghtin, Ali, Seyyed Morteza Masoudpanah, Masood Hasheminiasari, Amirhossein Salehi, Dorsasadat Safanama, Chong Kim Ong, Stefan Adams, and Mogalahalli V. Reddy. 2020. "Effect of Reducing Agent on Solution Synthesis of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries" Molecules 25, no. 16: 3746. https://doi.org/10.3390/molecules25163746
APA StyleYaghtin, A., Masoudpanah, S. M., Hasheminiasari, M., Salehi, A., Safanama, D., Ong, C. K., Adams, S., & Reddy, M. V. (2020). Effect of Reducing Agent on Solution Synthesis of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. Molecules, 25(16), 3746. https://doi.org/10.3390/molecules25163746